【題目】在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)分別是A-2,0),B0,3),C3,0.

1)在所給的圖中,畫出這個(gè)平面直角坐標(biāo)系;

2)點(diǎn)A經(jīng)過平移后對(duì)應(yīng)點(diǎn)為D3-3),將ABC作同樣的平移得到DEF,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,畫出平移后的DEF;

3)在(2)的條件下,點(diǎn)M在直線CD上,若DM=2CM,直接寫出點(diǎn)M的坐標(biāo).

【答案】1)作圖見解析;(2)作圖見解析;(3M3-6),M′3-1).

【解析】

1)利用已知點(diǎn)坐標(biāo)即可得出原點(diǎn)位置進(jìn)而得出答案;

2)利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;

3)利用已知坐標(biāo)系結(jié)合圖形得出M點(diǎn)位置.

1)如圖所示:平面直角坐標(biāo)系即為所求;

2)如圖所示:DEF即為所求;

3)如圖所示:M3,-6),M′3,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長ADE,使DEAD,連接EBEC,DB,下列條件中,不能使四邊形DBCE成為菱形的是(  )

A.ABBEB.BEDCC.ABE90°D.BE平分∠DBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動(dòng)陽光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,走到陽光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖A和圖B,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A值是多少?

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購買200雙運(yùn)動(dòng)鞋,建議購買35號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)OAOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,點(diǎn)EBC邊的中點(diǎn),點(diǎn)P為對(duì)角線AC上一動(dòng)點(diǎn),則PB+PE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點(diǎn)D,過點(diǎn)DDE⊥AC于點(diǎn)E,交BC的延長線于點(diǎn)F

求證:

1AD=BD;

2DF⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,、、均為格點(diǎn)(格點(diǎn)是指每個(gè)小正方形的頂點(diǎn)),將向下平移6個(gè)單位得到.利用網(wǎng)格點(diǎn)和直尺畫圖:

1)在網(wǎng)格中畫出;

2)畫出邊上的中線,邊上的高線

3)若的邊、分別與的邊、垂直,則的度數(shù)是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案