【題目】商丘市梁園區(qū)緊緊圍繞十九大報告提出的階段性目標(biāo)任務(wù),深化農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革,調(diào)整種植結(jié)構(gòu),深入進行了四大結(jié)構(gòu)調(diào)整,分別是:水池鋪鄉(xiāng)的辣椒產(chǎn)業(yè)、劉口鄉(xiāng)的雜果基地,孫福集鄉(xiāng)的山藥、蓮藕產(chǎn)業(yè),雙八鎮(zhèn)的草莓產(chǎn)業(yè).目前,這四種產(chǎn)業(yè)享譽省內(nèi)外.

某外地客商慕名來商丘考查,他準(zhǔn)備購入山藥和草莓進行試銷,經(jīng)市場調(diào)查,若購進山藥和草莓各2箱共花費170元,購進山藥3箱和草莓4箱共花費300元.

1)求購進山藥和草莓的單價;

2)若該客商購進了山藥和草莓共1000箱,其中山藥銷售單價為60元,草莓的銷售單價為70元.設(shè)購進山藥x箱,獲得總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②由于草莓的保鮮期較短,該客商購進草莓箱數(shù)不超過山藥箱數(shù)的,要使銷售這批山藥和草莓的利潤最大,請你幫該客商設(shè)計一個進貨方案,并求出其所獲利潤的最大值.

【答案】(1)每箱山藥的單價為40元,每箱草莓的單價為45元;(2)①y=﹣5x+25000;②購進山藥750箱,草莓250箱時所獲利潤最大,利潤最大為21250元.

【解析】

1)設(shè)購進山藥的單價為x元,購進草莓的單價為y元,列出方程組求解即可;

2)①把(1)得出的數(shù)據(jù)代入即可解答;

②根據(jù)題意可以得到x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)即可求得w的最大值和相應(yīng)的進貨方案.

解:(1)設(shè)購進每箱山藥的單價為x元,購進每箱草莓的單價為y元,

根據(jù)題意得,

解得,

答:每箱山藥的單價為40元,每箱草莓的單價為45元;

2由題意可得,

y=(6040x+7045)(1000x)=﹣5x+25000

由題意可得,

,

解得:x≥750

y=﹣5x+25000,k=﹣50,

yx的增大而減小,

當(dāng)x750時,y達到最大值,即最大利潤y=﹣5×750+2500021250(元),

此時1000x1000750250(箱),

答:購進山藥750箱,草莓250箱時所獲利潤最大,利潤最大為21250元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的是(

A.三角形的外心到三角形的三個頂點的距離相等

B.如果等腰三角形的兩邊長分別是56,那么這個等腰三角形的周長為16

C.將一次函數(shù)y3x-1的圖象向上平移3個單位,所得直線不經(jīng)過第四象限

D.若關(guān)于x的一元一次不等式組無解,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,過點的切線延長線于點

(Ⅰ)若,求的度數(shù);

(Ⅱ)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D、E分別在邊AB、AC上,AE2ADAB,∠ABE=∠ACB

1)求證:DEBC;

2)如果SADES四邊形DBCE18,求SADESBDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點PAD上一個動點,以PB 為對稱軸將APB折疊得到EPB,點A的對稱點為點E,射線BE交矩形ABCD的邊于點 F,若AB4,AD6,當(dāng)點F為矩形ABCD邊的中點時,AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點A、P,點A6),點P的橫坐標(biāo)是2.拋物線yax2+bx+ca≠0)經(jīng)過坐標(biāo)原點,且與x軸交于點B,頂點為P

求:(1)反比例函數(shù)的解析式;

2)拋物線的表達式及B點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活質(zhì)量的提高,人們健康意識逐漸增強,安裝凈水設(shè)備的百姓家庭越來越多.某廠家從去年開始投入生產(chǎn)凈水器,生產(chǎn)凈水器的總量y(臺)與今年的生產(chǎn)天數(shù)x(天)的關(guān)系如圖所示.今年生產(chǎn)90天后,廠家改進了技術(shù),平均每天的生產(chǎn)數(shù)量達到30臺.

1)求yx之間的函數(shù)表達式;

2)已知該廠家去年平均每天的生產(chǎn)數(shù)量與今年前90天平均每天的生產(chǎn)數(shù)量相同,求廠家去年生產(chǎn)的天數(shù);

3)如果廠家制定總量不少于6000臺的生產(chǎn)計劃,那么在改進技術(shù)后,至少還要多少天完成生產(chǎn)計劃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線yax2+bx+3與坐標(biāo)軸分別交于點AB(﹣3,0),C1,0),點P是線段AB上方拋物線上的一個動點.

1)求拋物線解析式;

2)當(dāng)點P運動到什么位置時,△PAB的面積最大?

3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于點,與軸交于點.

1)求的值及點的坐標(biāo);

2)過點 軸交反比例函數(shù)的圖象于點,求點D的坐標(biāo)和的面積;

3)觀察圖象,寫出當(dāng)x>0時不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案