【題目】如圖,在等腰 Rt△ABC 中,∠ACB=90°,P 是射線CB上一點(diǎn)(在B點(diǎn)右側(cè)),連接AP,延長(zhǎng)PC至點(diǎn)Q,使得 CQ=CP,過(guò)點(diǎn)Q作QH⊥AP交PA延長(zhǎng)線于點(diǎn)H,交BA延長(zhǎng)線于點(diǎn)M,用等式表示線段MB與PQ之間的數(shù)量關(guān)系,并證明.
【答案】,證明見(jiàn)解析.
【解析】
過(guò)M作MD⊥PQ,連接AQ,由垂直平分線的性質(zhì)可得AQ=AP,設(shè)∠PAB==∠MAH,利用角度關(guān)系可推出∠QAM==∠AMQ,進(jìn)而得到AQ=QM,再證明△QMD≌△APC得到MD= PC=PQ,最后根據(jù)△MDB為等腰直角三角形可得出MB與PQ之間的關(guān)系.
解:,證明如下:
如圖所示,過(guò)M作MD⊥PQ,連接AQ,
∵∠ACB=90°,CQ=CP
∴AC垂直平分PQ,
∴AQ=AP,
∴∠QAC=∠PAC,
設(shè)∠PAB==∠MAH,∵△ABC為等腰直角三角形
∴∠QAC=∠PAC=45°+,
∴∠QAH=180°-∠QAC-∠PAC=
∴∠QAM=∠QAH+∠MAH=
∵PH⊥QM,
∴∠MHA=90°,
∴∠AMQ=
∴∠QAM=∠AMQ
∴AQ=QM
又∵AQ=AP
∴QM=AP
∵∠P+∠MQD=90°,∠QMD+∠MQD=90°,
∴∠QMD=∠P
在△QMD和△APC中,
∴△QMD≌△APC(AAS)
∴MD=PC=PQ
∵∠MDB=90°,∠MBD=45°,
∴△MDB為等腰直角三角形
∴MB=MD=PQ
即PQ=MB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過(guò)點(diǎn)A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4≥kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD的對(duì)角線交于點(diǎn)O,已知△OBC的周長(zhǎng)為59厘米,且AD的長(zhǎng)是28厘米,兩對(duì)角線的差為14厘米,那么較長(zhǎng)的一條對(duì)角線長(zhǎng)是______厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù),下列說(shuō)法錯(cuò)誤的是( )
A. 當(dāng)x<1時(shí),y隨x的增大而減小
B. 若圖象與x軸有交點(diǎn),則
C. 當(dāng) a=3時(shí),不等式 的解集是
D. 若將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后過(guò)點(diǎn) ,則 a=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的表達(dá)式;
(2)在x軸上能否找到一點(diǎn)M,使△AOM是等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果點(diǎn)P在線段BC上以 2 cm/s 的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn) Q在線段CA上以v cm/s 的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),那么當(dāng)△BPD 與△CQP全等時(shí),v =( )
A.3B.4C.2或 4D.2或3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( 。
A. B. C. 1 D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com