【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對稱的△ABlCl;
(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標(biāo)為______.
【答案】(﹣,0)
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B,點C關(guān)于y軸對稱的點B1,C1的位置,順次連接各點即可;
(2)找出點C關(guān)于x軸的對稱點C′,連接BC′,BC′與x軸的交點即可為所求作P點;根據(jù)對稱性寫出點C′的坐標(biāo),再根據(jù)點B,C′的坐標(biāo)求出點P到CC′的距離,然后求出OP的長度即可得到點P的坐標(biāo).
(1)△ABC關(guān)于y軸對稱的△ABlCl如圖所示;
(2)如圖,點P即為所求作的到點B與點C的距離之和最小,
點C′的坐標(biāo)為(﹣1,﹣1),
∵點B(﹣2,2),∴點P到CC′的距離為=,
∴OP=1+=,點P(﹣,0).故答案為:(﹣,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到這樣一個問題:已知:在△ABC中,AB,BC,AC三邊的長分別為、、,求△ABC的面積.
小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出△ABC的面積他把這種解決問題的方法稱為構(gòu)圖法.
請回答:
(1)①圖1中△ABC的面積為________;
②圖1中過O點畫一條線段MN,使MN=2AB,且M、N在格點上.
(2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).利用構(gòu)圖法在圖2中畫出三邊長分別為、2、的格點△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為D,則下面的結(jié)論中正確的個數(shù)為( 。
①AB與AC互相垂直;
②AD與AC互相垂直;
③點C到AB的垂線段是線段AB;
④線段AB的長度是點B到AC的距離;
⑤線段AB是B點到AC的距離.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,關(guān)于x的二次函數(shù)y=x2﹣x+m的圖象交x軸的正半軸于A,B兩點,交y軸的正半軸于C點,如果x=a時,y<0,那么關(guān)于x的一次函數(shù)y=(a﹣1)x+m的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點A,點B,點C表示的數(shù)分別為﹣2,1,6.
(1)線段AB的長度為 個單位長度,線段AC的長度為 個單位長度.
(2)點P是數(shù)軸上的一個動點,從A點出發(fā),以每秒1個單位長度的速度,沿數(shù)軸的正方向運動,運動時間為t秒(0≤t≤8).用含t的代數(shù)式表示:線段BP的長為 個單位長度,點P在數(shù)軸上表示的數(shù)為 ;
(3)點M,點N都是數(shù)軸上的動點,點M從點A出發(fā)以每秒4個單位長度的速度運動,點N從點C出發(fā)以每秒3個單位長度的速度運動.設(shè)點M,N同時出發(fā),運動時間為x秒.點M,N相向運動,當(dāng)點M,N兩點間的距離為13個單位長度時,求x的值,并直接寫出此時點M在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道L上確定點D,使CD與L垂直,測得CD的長等于24米,在L上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上,有點P1 , P2 , P3 , P4 , 它們的橫坐標(biāo)依次為1,2,3,4,分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3 , 則S1+S2+S3=( )
A.1
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com