【題目】如圖,關于x的二次函數(shù)y=x2﹣x+m的圖象交x軸的正半軸于A,B兩點,交y軸的正半軸于C點,如果x=a時,y<0,那么關于x的一次函數(shù)y=(a﹣1)x+m的圖象可能是(
A.
B.
C.
D.

【答案】A
【解析】解:把x=a代入函數(shù)y=x2﹣x+m,得y=a2﹣a+m=a(a﹣1)+m, ∵x=a時,y<0,即 a(a﹣1)+m<0.
由圖象交y軸的正半軸于點C,得m>0,
即a(a﹣1)<0.
x=a時,y<0,∴a>0,a﹣1<0,
∴一次函數(shù)y=(a﹣1)x+m的圖象過一二四象限,
故選:A.
根據(jù)函數(shù)圖象與y軸的交點,可得m>0,根據(jù)二次函數(shù)圖象當x=a時,y<0,可得a>0,a﹣1<0,根據(jù)一次函數(shù)的性質,可得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿x軸做如下移動,第一次點A向左移動2個單位長度到達點 A1,第二次將點A1,向右移動4個單位長度到達點A2,第三次將點A2向左移動6個單位長度到達點A3,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離等于19,那么n的值是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足 ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=3,AF=4.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化簡,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:

1)如圖,在平面內有不共線的3個點A,BC.

a)作直線AB,射線AC,線段BC;

b)延長BC到點D,使CD=BC,連接AD;

c)作線段AB的中點E,連接CE;

d)測量線段CEAD的長度,直接寫出二者之間的數(shù)量關系_______.

(2) 5個大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經過折疊后能成為一個封閉的正方體盒子.

注意只需添加一個符合要求的正方形,并用陰影表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:2sin45°﹣( 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.

(1)作出△ABC關于y軸對稱的△ABlCl;

(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形DEFG的頂點在y軸上,頂點D,F(xiàn)在x軸上,點C在DE邊上,反比例函數(shù)y= (k≠0)的圖象經過B,C和邊EF的中點M,若S四邊形ABCD=8,則正方形DEFG的面積是( )

A.
B.
C.16
D.

查看答案和解析>>

同步練習冊答案