【題目】如圖,在中,平分,過點作,交于點,交于點,作的平分線交于點,交于點,若,下列結(jié)論:①;②;③;④;⑤.其中正確的個數(shù)是( )
A.2B.3C.4D.5
【答案】C
【解析】
先根據(jù)兩條角平分線和∠B的度數(shù),得出∠APC的度數(shù),隨后即可得出∠PCD的度數(shù),即可判斷①正確;
根據(jù)角的等量轉(zhuǎn)換得出,然后根據(jù)已知可得出∠BAD+∠BCP的度數(shù),即可得出∠AFC+∠DCG的和,即可判斷②正確;
由題目中的已知條件無法證明③;
在上截取一點H,使AH=AF,然后根據(jù)已知條件,證明和,從而得到,即可得到所求,即④正確;
作PM⊥AB于M,PN⊥AC于N,PQ⊥BC于Q,根據(jù)角平分線的性質(zhì)可得PM=PN=PQ,然后即可推出,則⑤正確.
解析:①∵AD平分∠BAC,CF平分∠ACB,∠B=60°,
∴,
,
∴,故①正確;
②∵CF平分∠ACB,AD平分∠BAC,
∴
∵
∴
,故②正確;
③由題目中的已知條件無法證明BG=AE,故③錯誤;
④在上截取一點H,使AH=AF
∵AD為∠BAC的角平分線
∴∠BAD=∠CAD
∴
由②知
∴
∴
∴
∴,
∴,故④正確;
⑤作PM⊥AB于M,PN⊥AC于N,PQ⊥BC于Q,
則PM=PN=PQ,
∵S△APF=AF×PM,S△CPG=CG×PQ,S△APC=AC×PN,
∴S△APF+S△CPG=S△APC,故⑤正確;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面說法錯誤的是( )
A.過一點有且只有一條直線與已知直線垂直.
B.在同一個平面內(nèi),任意三條直線相交,交點的個數(shù)最多有3個
C.平行于同一直線的兩條直線平行.
D.兩條平行線被第三條直線所截,一對內(nèi)錯角的平分線互相平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌A、B、C、D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A、B、C、D表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是半圓O上的三等分點,直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點F.
(1)求∠AFE的度數(shù);
(2)求陰影部分的面積(結(jié)果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助本市一名患“白血病”的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:
捐款的數(shù)額(單位:元) | 5 | 10 | 20 | 50 | 100 |
人數(shù)(單位:個) | 2 | 4 | 5 | 3 | 1 |
關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說法正確的是
A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點后一位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com