【題目】如圖,直線與直線交于點A,點A的橫坐標為,且直線與x軸交于點B,與y軸交于點D,直線與y軸交于點C.

(1)求點A的坐標及直線的函數(shù)表達式;

(2)連接,求的面積.

【答案】(1) ;(2)1.

【解析】

1)將x=-1代入得出縱坐標,從而得到點A的坐標;再用待定系數(shù)法求得直線的函數(shù)表達式;

2)連接,先根據(jù)解析式求得B,C,D的坐標,得出BO,CD的長,然后利用割補法求的面積,.

解:(1)因為點A在直線上,且橫坐標為,所以點A的縱坐標為,所以點A的坐標為.

因為直線過點A,所以將代入,得,解得,所以直線的函數(shù)表達式為.

2)如圖,連接BC

由直線的函數(shù)表達式,易得點B的坐標為,點D的坐標為,點C的坐標為,所以.

所以.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐示系xOy中,直線與直線交于點A(3,m).

(1)km的値;

(2)己知點P(n,n),過點P作垂直于y軸的直線與直線交于點M,過點P作垂直于x軸的直線與直線交于點N(PN不重合).PN≤2PM,結(jié)合圖象,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,P(a,3)是直線y=x+5上的一點,直線 y=k1x+b與雙曲線相交于P、Q(1,m).

(1)求雙曲線的解析式及直線PQ的解析式;

(2)根據(jù)圖象直接寫出不等式>k1x+b的解集.

(3)若直線y=x+5與x軸交于A,直線y=k1x+b與x軸交于M求△APQ的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程有兩個不相等的實數(shù)根x1,x2

1)求k的取值范圍;

2)如果,且k為整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,以AD為直徑的O與AE交于點F.

(1)求證:四邊形AOCE為平行四邊形;

(2)求證:CF與O相切;

(3)若F為AE的中點,求ADF的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點.

)求m的取值范圍;

)若m取滿足條件的最小的整數(shù),

①寫出這個二次函數(shù)的表達式;

②當n≤x≤1時,函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;

③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點O.設(shè)平移后的圖象對應(yīng)的函數(shù)表達式為y=a(x-h(huán))2 +k,當x<2時,y隨x的增大而減小,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,過點于點,點在邊上,,連接,

(1)求證:四邊形BFDE是矩形;

(2)CF=3,BE=5,AF平分∠DAB,求平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線AB交兩坐標軸于Aa,0)、B0,b)兩點,且ab滿足等式:+b420,點P為直線AB上第一象限內(nèi)的一動點,過POP的垂線且與過B點且平行于x軸的直線相交于點Q,

1)求A,B兩點的坐標;

2)當P點在直線AB上的第一象限內(nèi)運動時,APBQ的值變不變?如果不變,請求出這個定值;若變化請說明理由.

3)延長QO與直線AB交于點M.請判斷出線段AP,BMPM三條線段構(gòu)成三角形的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰RtABC中,CACB,∠ACB90°,點OAB的中點.

1)如圖1,求證:COBO;

2)如圖2,點M在邊AC上,點N在邊BC延長線上,MNAMCN,求∠MON的度數(shù);

3)如圖3,ADBC,ODAC,ADOD交于點D,QOB的中點,連接CQDQ,試判斷線段CQDQ的關(guān)系,并給出證明.

查看答案和解析>>

同步練習冊答案