【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價(jià)為50元,成本為25元.由于在生產(chǎn)過(guò)程中,平均每生產(chǎn)1件產(chǎn)品,有污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)兩種方案對(duì)污水進(jìn)行處理,并準(zhǔn)備實(shí)施.
方案甲:工廠將污水排到污水廠統(tǒng)一處理,每處理需付14元的排污費(fèi);
方案乙:工廠將污水進(jìn)行凈化處理后再排出,每處理污水所用原料費(fèi)為2元,且每月凈化設(shè)備的損耗費(fèi)為30000元.設(shè)工廠每月生產(chǎn)x件產(chǎn)品(x為正整數(shù),).
(1)根據(jù)題意填寫(xiě)下表:
每月生產(chǎn)產(chǎn)品的數(shù)量/件 | 3500 | 4500 | 5500 | … |
方案甲處理污水的費(fèi)用/元 | 31500 | … | ||
方案乙處理污水的費(fèi)用/元 | 34500 | … |
(2)設(shè)工廠按方案甲處理污水時(shí)每月獲得的利潤(rùn)為元,按方案乙處理污水時(shí)每月獲得的利潤(rùn)為元,分別求,關(guān)于x的函數(shù)解析式;
(3)根據(jù)題意填空:
①若該工廠按方案甲處理污水時(shí)每月獲得的利潤(rùn)和按方案乙處理污水時(shí)每月獲得利潤(rùn)相同,則該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為_______件;
②若該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為7500件時(shí),則該工廠選用方案甲、方案乙中的方案_______處理污水時(shí)所獲得的利潤(rùn)多;
③若該工廠每月獲得的利潤(rùn)為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時(shí)生產(chǎn)產(chǎn)品的數(shù)量少.
【答案】(1)24500,38500;33500,35500;(2),;(3)①5000,②乙,③甲.
【解析】
(1)根據(jù)污水量=產(chǎn)品數(shù)量×0.5立方米可求出該工廠污水排放量,按照甲乙方案分別計(jì)算處理污水的費(fèi)用即可;
(2)每件產(chǎn)品出廠價(jià)為50,共件,則總收入為:,成本費(fèi)為,產(chǎn)生的污水總量為,按方案甲處理污水應(yīng)花費(fèi):,按方案乙處理應(yīng)花費(fèi):.根據(jù)利潤(rùn)總收入總支出即可得到與的關(guān)系.
(3)①當(dāng)時(shí),求出的值即可;
②把,分別代入,求出函數(shù)值即可;
②把,分別代入,函數(shù)解析式分別求出x的值即可.
解:(1)當(dāng)每月生產(chǎn)產(chǎn)品的數(shù)量3500件時(shí),污水量=()
方案甲費(fèi)用為:(元) ,方案乙費(fèi)用為:(元),
當(dāng)每月生產(chǎn)產(chǎn)品的數(shù)量5500件時(shí),污水量=(),
方案甲費(fèi)用為:(元) ,方案乙費(fèi)用為:(元),
故答案為:24500,38500;33500,35500;
(2)根據(jù)題意,得,即;
,即
(3)①依題意得:當(dāng)時(shí),即,解得:,
②當(dāng)時(shí),(元);,
故方案乙利潤(rùn)多;
③工廠每月獲得的利潤(rùn)為81000元,即時(shí),,解得;
當(dāng)時(shí),,解得;
故方案甲生產(chǎn)產(chǎn)品的數(shù)量少;
故答案為:①5000;②乙;③甲.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線(xiàn)分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①;②△DFP△BPH;③; ④.其中正確的是______.(寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2-4x+c(a≠0)與反比例函數(shù)y=的圖象相交于B點(diǎn),且B點(diǎn)的橫坐標(biāo)為3,拋物線(xiàn)與y軸交于點(diǎn)C(0,6),A是拋物線(xiàn)y=ax2-4x+c的頂點(diǎn),P點(diǎn)是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),P點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)規(guī)定,我市將垃圾分為了四類(lèi):可回收物、易腐垃圾、有害垃圾和其他垃圾四大類(lèi).現(xiàn)有投放這四類(lèi)垃圾的垃圾桶各1個(gè),若將用不透明垃圾袋分類(lèi)打包好的兩袋不同垃圾隨機(jī)投進(jìn)兩個(gè)不同的垃圾桶,投放正確的概率是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知半圓⊙O的直徑AB=10,弦CD∥AB,且CD=8,E為弧CD的中點(diǎn),點(diǎn)P在弦CD上,聯(lián)結(jié)PE,過(guò)點(diǎn)E作PE的垂線(xiàn)交弦CD于點(diǎn)G,交射線(xiàn)OB于點(diǎn)F.
(1)當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),求CP的長(zhǎng);
(2)設(shè)CP=x,OF=y,求y與x的函數(shù)關(guān)系式及定義域;
(3)如果GP=GF,求△EPF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為Rt△ABC直角邊AC上一點(diǎn),以OC為半徑作⊙O與斜邊AB相切于點(diǎn)D,交OA于點(diǎn)E,已知,AC=3,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)D為A′B的中點(diǎn),連接AD.則點(diǎn)A的運(yùn)動(dòng)路徑與線(xiàn)段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC的長(zhǎng)為半徑作⊙A,交AB于點(diǎn)D,交CA的延長(zhǎng)線(xiàn)于點(diǎn)E.過(guò)點(diǎn)E作EF∥AB,交⊙A于點(diǎn)F,連接AF,BF,DF.
(1)求證:BF是⊙A的切線(xiàn);
(2)填空:
①當(dāng)四邊形ADFE是周長(zhǎng)為20的菱形時(shí),BF= ;
②當(dāng)= 時(shí),四邊形ACBF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)y=(x>0)的圖象恰好經(jīng)過(guò)點(diǎn)F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com