【題目】已知∠ADB,作圖.
步驟1:以點(diǎn)D為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交DA、DB于點(diǎn)M、N;再分別以點(diǎn)M、N為圓心,大于MN長(zhǎng)為半徑畫(huà)弧交于點(diǎn)E,畫(huà)射線DE.
步驟2:在DB上任取一點(diǎn)O,以點(diǎn)O為圓心,OD長(zhǎng)為半徑畫(huà)半圓,分別交DA、DB、DE于點(diǎn)P、Q、C;
步驟3:連結(jié)PQ、OC.
則下列判斷:①;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正確的結(jié)論有( 。
A. ①③④ B. ①②④ C. ②③④ D. ①②③④
【答案】B
【解析】
由DQ為直徑可得出DA⊥PQ,結(jié)合OC⊥PQ可得出DA∥OC,結(jié)論②正確;由作圖可知∠CDQ=∠PDC,進(jìn)而可得出弧PC=弧CQ ,OC平分∠AOB,結(jié)論①④正確;由∠AOB的度數(shù)未知,不能得出DP=PQ,即結(jié)論③錯(cuò)誤.綜上即可得出結(jié)論.
解:∵DQ為直徑,
∴∠DPQ=90°,DA⊥PQ.
∵OC⊥PQ,
∴DA∥OC,結(jié)論②正確;
由作圖可知:∠CDQ=∠PDC,
∴弧PC=弧CQ,OC平分∠AOB,結(jié)論①④正確;
∵∠ADB的度數(shù)未知,∠PDQ和∠PQD互余,
∴∠PDQ不一定等于∠PQD,
∴DP不一定等于PQ,結(jié)論③錯(cuò)誤.
綜上所述:正確的結(jié)論有①②④.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說(shuō)明理由;
(2)延長(zhǎng)DE,BA交于點(diǎn)H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫(xiě)出的值.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中ABCD,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)位點(diǎn)G,過(guò)點(diǎn)B作BE⊥CG,垂足為E且在AD上,BE交PC于點(diǎn)F
(1)如圖1,若點(diǎn)E是AD的中點(diǎn),求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;②當(dāng)AD=25,且AE<DE時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度;已知△ABC.
(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°的△A1B1C1,(只畫(huà)出圖形).
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2,(只畫(huà)出圖形),寫(xiě)出B2和C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第16屆省運(yùn)會(huì)在我市隆重舉行,推動(dòng)了我市各校體育活動(dòng)如火如荼的開(kāi)展,在某校射箭隊(duì)的一次訓(xùn)練中,甲,乙兩名運(yùn)動(dòng)員前5箭的平均成績(jī)相同,教練將兩人的成績(jī)繪制成如下尚不完整的統(tǒng)計(jì)圖表.
乙運(yùn)動(dòng)員成績(jī)統(tǒng)計(jì)表(單位:環(huán))
第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
8 | 10 | 8 | 6 |
(1)甲運(yùn)動(dòng)員前5箭射擊成績(jī)的眾數(shù)是 環(huán),中位數(shù)是 環(huán);
(2)求乙運(yùn)動(dòng)員第5次的成績(jī);
(3)如果從中選擇一個(gè)成績(jī)穩(wěn)定的運(yùn)動(dòng)員參加全市中學(xué)生比賽,你認(rèn)為應(yīng)選誰(shuí)去?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)380名師生秋游,計(jì)劃租用7輛客車(chē),現(xiàn)有甲、乙兩種型號(hào)客車(chē),它們的載客量和租金如表.
甲種客車(chē) | 乙種客車(chē) | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車(chē)x輛,租車(chē)總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車(chē)有多少輛時(shí),能保障所有的師生能參加秋游且租車(chē)費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(給出定義)
若四邊形的一條對(duì)角線能將四邊形分割成兩個(gè)相似的直角三角形,那么我們將這種四邊形叫做“跳躍四邊形”,這條對(duì)角線叫做“跳躍線”.
(理解概念)
(1)命題“凡是矩形都是跳躍四邊形”是什么命題(“真”或“假”).
(2)四邊形ABCD為“跳躍四邊形”,且對(duì)角線AC為“跳躍線”,其中AC⊥CB,∠B=30°,AB=4,求四邊形ABCD的周長(zhǎng).
(實(shí)際應(yīng)用)已知拋物線y=ax2+m(a≠0)與x軸交于B(﹣2,0),C兩點(diǎn),與直線y=2x+b交于A,B兩點(diǎn).
(3)直接寫(xiě)出C點(diǎn)坐標(biāo),并求出拋物線的解析式.
(4)在線段AB上有一個(gè)點(diǎn)P,在射線BC上有一個(gè)點(diǎn)Q,P,Q兩點(diǎn)分別以個(gè)單位/秒,5個(gè)單位/秒的速度同時(shí)從B出發(fā),沿BA,BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).在第一象限的拋物線上是否存在點(diǎn)M,使得四邊形BQMP是以PQ為“跳躍線”的“跳躍四邊形”,若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫(xiě)出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com