如圖,正方形ABCD的面積為1,M是AB的中點(diǎn),則圖中陰影部分的面積是
1
3
1
3
分析:根據(jù)正方形的性質(zhì)可得到△AME∽△CDE,根據(jù)相似三角形的邊對(duì)應(yīng)邊成比例,求得EH,EF的長(zhǎng),從而即可求得陰影部分的面積.
解答:解:如圖,過(guò)點(diǎn)E作HF⊥AB,
∵AM∥CD,
∴∠DCE=∠EAM,∠CDE=∠EMA,
∴△AME∽△CDE
∴AM:DC=EH:EF=1:2,F(xiàn)H=AD=1,
∴EH=
1
3
,EF=
2
3

∴陰影部分的面積=S正方形ABCD-S△AME-S△CDE-S△MBC=1-
4
12
-
1
3
-
1
4
=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出相似三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案