【題目】如圖,矩形中,,,點在邊上,把沿翻折后,點落在處.若恰為等腰三角形,則的長為______.

【答案】2

【解析】

分兩種情況討論:①當C′A=C′B時,易得HC′=FC′=1,然后求出DH,再利用K字型相似可得△DHC′∽△C′FE,進而求出EF,然后根據(jù)CE=CF-EF即得出結果;②當AB=AC′時,易得四邊形CEC′D是正方形,所以CE=2

如圖1中,當C′A=C′B時,作C′H⊥ADHBCF

C′A=C′B

∴∠C′AB=C′BA

∴∠C′AH=C′BF

在△AHC'和△BFC'中,

∵∠AHC'=BF C',∠C′AH=C′BF,C′A=C′B

∴△AHC'≌△BFC'AAS

HC′=FC′=1,在RtDHC′中,DH=

∵∠DC'E=DCE=90°

∴∠DC'H+EC'F=90°,

又∵∠DC'H+HDC'=90°,

∴∠EC'F=HDC'

又∵∠DHC'=EFC'=90°,

∴△DHC′∽△C′FE,

EF=

∵四邊形DHFC是矩形,

CF=DH=

CE=CF-EF=

如圖2中,當AB=AC′時,點C′AD上,此時四邊形CEC′D是正方形,CE=2

綜上所述,滿足條件的CE的值為2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖RtABC中,∠ACB90°,AC4,BC2,點P在邊AC上運動(點P與點A、C不重合).以P為圓心,PA為半徑作⊙P交邊AB于點D、過點D作⊙P的切線交射線BC于點E(點E與點B不重合).

1)求證:BEDE;

2)若PA1.求BE的長;

3)在P點的運動過程中.(BE+PAPA的值是否有最大值?如果有,求出最大值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是銳角ABC的外接圓,FH是⊙O的切線,切點為F,FHBC,連結AFBCE,∠ABC的平分線BDAFD,連結BF.下列結論:①AF平分∠BAC;②點FBDC的外心;③;④若點MN分別是ABAF上的動點,則BN+MN的最小值是ABsinBAC.其中一定正確的是_____(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線為正整數(shù),且)與軸的交點為,,當時,第1條拋物線軸的交點為,其他依次類推.

1)求,的值及拋物線的解析式;

2)拋物線的頂點的坐標為( , );依次類推,第條拋物線的頂點的坐標為( );所有拋物線的頂點坐標滿足的函數(shù)關系式是

3)探究下列結論:

①是否存在拋物線,使得為等腰直角三角形?若存在,請求出拋物線的表達式;若不存在,請說明理由;

②若直線與拋物線分別交于則線段,,…則線段,,…的長有何規(guī)律?請用含的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果函數(shù)C)的圖象經過點(m,n)、(-m,-n),那么我們稱函數(shù)C為對稱點函數(shù),這對點叫做對稱點函數(shù)的友好點.

例如:函數(shù)經過點(12)、(-1-2),則函數(shù)是對稱點函數(shù),點(1,2)、(-1,-2)叫做對稱點函數(shù)的友好點.

1)填空:對稱點函數(shù)一個友好點是(3,3),則b= ,c=

2)對稱點函數(shù)一個友好點是(2b,n),當2bx≤2時,此函數(shù)的最大值為,最小值為,且=4,求b的值;

3)對稱點函數(shù))的友好點是M、N(點M在點N的上方),函數(shù)圖象與y軸交于點A.把線段AM繞原點O順時針旋轉90°,得到它的對應線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個公共點時,結合函數(shù)圖象,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘗試探究

如圖-,在△ABC中,∠C=90°,∠A=30°,點E、F分別是BC、AC邊上的點,且EF//BC.

的值為 直線與直線的位置關系為 ;

類比延伸

如圖,若將圖中的繞點順時針旋轉,連接,則在旋轉的過程中,請判斷的值及直線與直線的位置關系,并說明理由;

拓展運用

,在旋轉過程中,當三點在同一直線上時,請直接寫出此時線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自主學習,請閱讀下列解題過程.

例:用圖象法解一元二次不等式:

解:設,則的二次函數(shù).

拋物線開口向上.

時,,解得

由此得拋物線的大致圖象如圖所示.

觀察函數(shù)圖象可知:當時,

的解集是:

通過對上述解題過程的學習,按其解題的思路和方法解答下列問題:

1)上述解題過程中,滲透了下列數(shù)學思想中的    .(只填序號)①轉化思想,②分類討論思想,③數(shù)形結合思想

2)觀察圖象,直接寫出一元二次不等式:的解集是 ;

3)仿照上例,用圖象法解一元二次不等式:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點M的坐標是(-2),My軸相切于點C,與x軸相交于A,B兩點.

(1)證明:MAB是等邊三角形.

(2)M上是否存在點D,使ACD是直角三角形,若存在,試求點D的坐標;若不存在,請說明理由.

(3)Pm,n)是過A,B,C三點的拋物線上一點,當APB30°時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電影公司隨機收集了2000部電影的有關數(shù)據(jù),經分類整理得到如表:

電影類型

第一類

第二類

第三類

第四類

第五類

第六類

電影部數(shù)

140

50

300

200

800

510

好評率

注:好評率是指一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.

如果電影公司從收集的電影中隨機選取1部,那么抽到的這部電影是獲得好評的第四類電影的概率是______;

電影公司為了增加投資回報,擬改變投資策略,這將導致不同類型電影的好評率發(fā)生變化假設表格中只有兩類電影的好評率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評率增加,哪類電影的好評率減少,可使改變投資策略后總的好評率達到最大?

答:______

查看答案和解析>>

同步練習冊答案