【題目】如圖,⊙O是銳角△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.下列結論:①AF平分∠BAC;②點F為△BDC的外心;③;④若點M,N分別是AB和AF上的動點,則BN+MN的最小值是ABsin∠BAC.其中一定正確的是_____(把你認為正確結論的序號都填上).
【答案】①②③④
【解析】
如圖1,連接OF,CF,通過切線的性質(zhì)證OF⊥FH,進而由FH∥BC,得OF⊥BC,即可由垂徑定理得到F是弧BC的中點,根據(jù)圓周角定理可得∠BAF=∠CAF,可得AF平分∠BAC;由三角形外角性質(zhì)和同弧所對的圓周角相等可得∠BDF=∠FBD,可得BF=DF=CF,可得點F為△BDC的外心;如圖2,過點C作CG∥AB,交AF的延長線于點G,通過證明△BAE∽△CGE,可得,即可判斷③;如圖3,作點M關于AF的對稱點M',當點N在線段BM'上,且BM'⊥AC時,BN+MN有最小值為BM',即可判斷④.
解:如圖1,連接OF,CF,
∵FH是⊙O的切線,
∴OF⊥FH,
∵FH∥BC,
∴OF⊥BC,且OF為半徑,
∴OF垂直平分BC,
∴=,
∴∠1=∠2,BF=CF,
∴AF平分∠BAC,故①正確,
∵∠1=∠2,∠4=∠3,∠5=∠2,
∴∠1+∠4=∠2+∠3,
∴∠1+∠4=∠5+∠3,
∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,
∴∠BDF=∠FBD,
∴BF=FD,且BF=CF,
∴BF=DF=CF,
∴點F為△BDC的外心,故②正確;
如圖2,過點C作CG∥AB,交AF的延長線于點G,
∵CG∥AB,
∴∠BAE=∠EGC,且∠BAE=∠CAE,
∴∠CAE=∠CGE,
∴AC=CG,
∵CG∥AB,
∴△BAE∽△CGE,
∴,
∴==,
故③正確;
如圖3,作點M關于AF的對稱點M',
∵點M與點M'關于AF對稱,
∴MN=M'N,
∴BN+MN=BN+M'N,
∴當點N在線段BM'上,且BM'⊥AC時,BN+MN有最小值為BM',且sin∠BAC=,
∴BN+MN最小值為ABsin∠BAC,
故④正確,
故答案為:①②③④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交于點、,與軸、軸分別交于點、,作軸于點,軸于點,過點、分別作,,分別交軸于點、,交于點,若四邊形和四邊形的面積和為12,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價格銷售一種成本價為40元的文化紀念杯,每星期可售出100只。后來經(jīng)過市場調(diào)查發(fā)現(xiàn),每只杯子的售價每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀念杯要想平均每星期獲利2240元,請回答:
(1)每只杯應降價多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該公司應該按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小紅遇到這樣一個問題:如圖1,在四邊形ABCD中,∠A=∠C=90°,∠D=60°,AB=,BC=,求AD的長.
小紅發(fā)現(xiàn),延長AB與DC相交于點E,通過構造Rt△ADE,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:AD的長為 .
參考小紅思考問題的方法,解決問題:
如圖3,在四邊形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,其外接圓的半徑為r.
(探究)
(1)如圖甲,作直徑BD,若r=3,發(fā)現(xiàn)的值為 .
(2)猜想,,之間的關系,并證明你的猜想.
(應用)
(3)如圖乙,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上,求此時貨輪距燈塔A的距離AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在雙曲線上,垂直軸,垂足為,點在上,平行于軸交雙曲線于點,直線與軸交于點,已知,點的坐標為.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線的頂點坐標是(1,4),且過點(2,5),
(1)求拋物線的函數(shù)表達式;
(2)求將拋物線向左平移幾個單位,可以使平移后的拋物線經(jīng)過原點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com