【題目】如圖,⊙O是銳角ABC的外接圓,FH是⊙O的切線,切點為F,FHBC,連結AFBCE,∠ABC的平分線BDAFD,連結BF.下列結論:①AF平分∠BAC;②點FBDC的外心;③;④若點MN分別是ABAF上的動點,則BN+MN的最小值是ABsinBAC.其中一定正確的是_____(把你認為正確結論的序號都填上).

【答案】①②③④

【解析】

如圖1,連接OF,CF,通過切線的性質(zhì)證OFFH,進而由FHBC,得OFBC,即可由垂徑定理得到F是弧BC的中點,根據(jù)圓周角定理可得∠BAF=∠CAF,可得AF平分∠BAC;由三角形外角性質(zhì)和同弧所對的圓周角相等可得∠BDF=∠FBD,可得BFDFCF,可得點FBDC的外心;如圖2,過點CCGAB,交AF的延長線于點G,通過證明BAE∽△CGE,可得,即可判斷③;如圖3,作點M關于AF的對稱點M',當點N在線段BM'上,且BM'AC時,BN+MN有最小值為BM',即可判斷④.

解:如圖1,連接OF,CF

FH是⊙O的切線,

OFFH,

FHBC,

OFBC,且OF為半徑,

OF垂直平分BC,

,

∴∠1=∠2BFCF,

AF平分∠BAC,故①正確,

∵∠1=∠2,∠4=∠3,∠5=∠2,

∴∠1+4=∠2+3,

∴∠1+4=∠5+3

∵∠1+4=∠BDF,∠5+3=∠FBD,

∴∠BDF=∠FBD,

BFFD,且BFCF,

BFDFCF

∴點FBDC的外心,故②正確;

如圖2,過點CCGAB,交AF的延長線于點G

CGAB,

∴∠BAE=∠EGC,且∠BAE=∠CAE,

∴∠CAE=∠CGE

ACCG,

CGAB

∴△BAE∽△CGE,

,

,

故③正確;

如圖3,作點M關于AF的對稱點M',

∵點M與點M'關于AF對稱,

MNM'N

BN+MNBN+M'N,

∴當點N在線段BM'上,且BM'AC時,BN+MN有最小值為BM',且sinBAC,

BN+MN最小值為ABsinBAC,

故④正確,

故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖像交于點、,與軸、軸分別交于點、,作軸于點,軸于點,過點、分別作,,分別交軸于點、于點,若四邊形和四邊形的面積和為12,則的值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實根x1、x2

1)求實數(shù)k的取值范圍

2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價格銷售一種成本價為40元的文化紀念杯,每星期可售出100只。后來經(jīng)過市場調(diào)查發(fā)現(xiàn),每只杯子的售價每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀念杯要想平均每星期獲利2240元,請回答:

(1)每只杯應降價多少元?

(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該公司應該按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小紅遇到這樣一個問題:如圖1,在四邊形ABCD中,∠A=C=90°,∠D=60°,AB=,BC=,求AD的長.

小紅發(fā)現(xiàn),延長ABDC相交于點E,通過構造RtADE,經(jīng)過推理和計算能夠使問題得到解決(如圖2)

請回答:AD的長為    

參考小紅思考問題的方法,解決問題:

如圖3,在四邊形ABCD中,tanA=,∠B=C=135°,AB=9,CD=3,求BCAD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在銳角ABC中,∠A、∠B、∠C的對邊分別是a、bc,其外接圓的半徑為r

(探究)

1)如圖甲,作直徑BD,若r=3,發(fā)現(xiàn)的值為

2)猜想,,之間的關系,并證明你的猜想.

(應用)

3)如圖乙,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上,求此時貨輪距燈塔A的距離AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在雙曲線上,垂直軸,垂足為,點上,平行于軸交雙曲線于點,直線軸交于點,已知,點的坐標為

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,點在邊上,把沿翻折后,點落在處.若恰為等腰三角形,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線的頂點坐標是(1,4),且過點(25),

1)求拋物線的函數(shù)表達式;

2)求將拋物線向左平移幾個單位,可以使平移后的拋物線經(jīng)過原點?

查看答案和解析>>

同步練習冊答案