【題目】在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)坐標(biāo)是(1,4),且過(guò)點(diǎn)(2,5),

1)求拋物線的函數(shù)表達(dá)式;

2)求將拋物線向左平移幾個(gè)單位,可以使平移后的拋物線經(jīng)過(guò)原點(diǎn)?

【答案】1;(2)將拋物線向左平移1個(gè)單位,可使得平移后所得拋物線經(jīng)過(guò)原點(diǎn)

【解析】

1)設(shè)頂點(diǎn)式為,然后把(2,5)代入求出a即可;

2)設(shè)將拋物線向左平移mm0)個(gè)單位,可使得平移后所得拋物線經(jīng)過(guò)原點(diǎn),利用拋物線平移的規(guī)律得到平移后的拋物線解析式為,然后把原點(diǎn)坐標(biāo)代入求出m即可.

解:(1)設(shè)拋物線的解析式為,

代入,得,

解得:,

所以拋物線的解析式為,即;

2)設(shè)將拋物線向左平移個(gè)單位,可使得平移后所得拋物線經(jīng)過(guò)原點(diǎn),

則平移后的拋物線解析式為

代入得,

解得(舍去),,

所以將拋物線向左平移1個(gè)單位,可使得平移后所得拋物線經(jīng)過(guò)原點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是銳角ABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FHBC,連結(jié)AFBCE,∠ABC的平分線BDAFD,連結(jié)BF.下列結(jié)論:①AF平分∠BAC;②點(diǎn)FBDC的外心;③;④若點(diǎn)M,N分別是ABAF上的動(dòng)點(diǎn),則BN+MN的最小值是ABsinBAC.其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過(guò)程.

例:用圖象法解一元二次不等式:

解:設(shè),則的二次函數(shù).

拋物線開(kāi)口向上.

當(dāng)時(shí),,解得

由此得拋物線的大致圖象如圖所示.

觀察函數(shù)圖象可知:當(dāng)時(shí),

的解集是:

通過(guò)對(duì)上述解題過(guò)程的學(xué)習(xí),按其解題的思路和方法解答下列問(wèn)題:

1)上述解題過(guò)程中,滲透了下列數(shù)學(xué)思想中的    .(只填序號(hào))①轉(zhuǎn)化思想,②分類討論思想,③數(shù)形結(jié)合思想

2)觀察圖象,直接寫出一元二次不等式:的解集是 ;

3)仿照上例,用圖象法解一元二次不等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(-2,),My軸相切于點(diǎn)C,與x軸相交于AB兩點(diǎn).

(1)證明:MAB是等邊三角形.

(2)M上是否存在點(diǎn)D,使ACD是直角三角形,若存在,試求點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)Pm,n)是過(guò)AB,C三點(diǎn)的拋物線上一點(diǎn),當(dāng)APB30°時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)EAC的中點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)F.連接AE并延長(zhǎng)交BF于點(diǎn)C.

(1)求證:AB=BC;

(2)如果AB=5,tanFAC=,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩人進(jìn)行羽毛球練習(xí)賽時(shí)的一個(gè)瞬間,羽毛球飛行的高度ym)與水平距離xm)的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1mP處發(fā)出一球,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.羽毛球沿水平方向運(yùn)動(dòng)4m時(shí),達(dá)到羽毛球距離地面最大高度是m

1)求羽毛球經(jīng)過(guò)的路線對(duì)應(yīng)的函數(shù)關(guān)系式;

2)通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng);

3)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到離地面的高度為mQ處時(shí),乙扣球成功求此時(shí)乙與球網(wǎng)的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?

(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:

電影類型

第一類

第二類

第三類

第四類

第五類

第六類

電影部數(shù)

140

50

300

200

800

510

好評(píng)率

注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.

如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______

電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?

答:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,OC⊙O的半徑,點(diǎn)D是半圓AB上一動(dòng)點(diǎn)(不與A、B重合),連結(jié)DC交直徑AB與點(diǎn)E,∠AOC=60°,則∠AED的范圍為(

A.0°< ∠AED <180°B.30°< ∠AED <120°

C.60°< ∠AED <120°D.60°< ∠AED <150°

查看答案和解析>>

同步練習(xí)冊(cè)答案