【題目】如圖,已知,點,,,…在射線上,點,,,…在射線上,,,,…均為等邊三角形,若,則的邊長為______.(用含的式子表示)
【答案】2n2.
【解析】
據(jù)等腰三角形的性質以及平行線的性質得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…進而得出答案.
作圖如下:
∵是等邊三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°120°30°=30°,
又∵∠3=60°,
∴∠5=180°60°30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
…
∴△AnBnAn+1的邊長為2n1.
故=2n2.
故答案為:2n2.
科目:初中數(shù)學 來源: 題型:
【題目】灌云教育局為了解今年九年級學生體育測試情況,隨機抽查了部分學生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)請把條形統(tǒng)計圖補充完整;
(2)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是_____________;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是_____________;
(4)若該縣九年級有8000名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結果如圖所示:
請依據(jù)統(tǒng)計結果回答下列問題:
(1)本次調查中,一共調查了 位好友.
(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.
①請補全條形圖;
②扇形圖中,“A”對應扇形的圓心角為 度.
③若小陳微信朋友圈共有好友150人,請根據(jù)調查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,將兩個完全相同的三角形紙片 ABC 和 DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如圖2,固定△ABC,使△DEC 繞點 C 旋轉,當點 D 恰好落 在 AB 邊上時,
①填空:線段 DE 與 AC 的位置關系是 ;
②設△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2
(2)當△DEC 繞點 C 旋轉到如圖 3 所示的位置時,小明猜想(1) 中 S1 與 S2 的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE 邊上的高,請你證明小明的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,求證:.下面給出運用反證法證明的四個步驟:①∴,這與三角形內角和為矛盾
②因此假設不成立.∴
③假設在中,
④由,得,即
這四個步驟正確的順序應是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點(即這些小正方形的頂點)上,且它們的坐標分別是A(2,3),B(5,1),C(1,3),結合所給的平面直角坐標系,解答下列問題:
(1)請在如圖坐標系中畫出△ABC;
(2)畫出△ABC關于x軸對稱的△A′B′C′,并寫出△A′B′C′各頂點坐標;
(3)在x軸上找一點P,使PA+PB的值最小。請畫出點P,并求出點P坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點在直線上,點都在直線上(點在點的左側),連接,平分且
(1)如圖1,求證:
(2)如圖2,點為上一點,連接,若,求的度數(shù)
(3)在(2)的條件下,點在直線上,連接,且,若,求的度數(shù)(要求:在備用圖中畫出圖形后,再計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,點D、E分別在邊BC、AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=4,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com