【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)均在格點(diǎn)上,是一條小河平行的兩岸.
(Ⅰ)的距離等于_____;
(Ⅱ)現(xiàn)要在小河上修一座垂直于兩岸的橋(點(diǎn)在上,點(diǎn)在上,橋的寬度忽略),使最短,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出,并簡(jiǎn)要說(shuō)明點(diǎn),的位置是如何找到的(不要求證明)_________________________________.
【答案】 取格點(diǎn),連接,(使),取格點(diǎn)、,連接(使),與交于點(diǎn);同理作點(diǎn);連接與交于點(diǎn),連接與交于點(diǎn),連接,即為所求
【解析】
(Ⅰ)利用勾股定理求出AB的長(zhǎng)即可;(Ⅱ)要使最短,則MN⊥l1,AM與BN轉(zhuǎn)化成一條線段時(shí)最短,取格點(diǎn),連接,交l1于Q,交l2于P,由網(wǎng)格性質(zhì)可得AC⊥l1,由l1//l2可得平行線間的距離PQ=MN的長(zhǎng),取格點(diǎn)、,連接,交AC于A′,根據(jù)相似三角形的性質(zhì)可得AA′=PQ,同理可作點(diǎn)B′,則BB′=PQ,連接與交于點(diǎn),連接與交于點(diǎn),則BB′=PQ,可得四邊形AA′BB′是平行四邊形,由全等三角形的性質(zhì)可得AM=A′N,可得四邊形AA′MN是平行四邊形,可知MN⊥l1,同理BN=B′M,則AM+BN=AB′距離最短,即可得解.
(Ⅰ)AB==.
故答案為:
(Ⅱ)如圖,取格點(diǎn),連接,(使),交l1于Q,交l2于P,
∴PQ⊥l1,
∴PQ=,
取格點(diǎn)、,連接(使),與交于點(diǎn);
∵∠AFE=∠EAA′,∠AEF=∠AEF,
∴△AA′E∽△FAE,
∴,
∴AA′=,
∴AA′=PQ,
同理作點(diǎn);連接與交于點(diǎn),連接與交于點(diǎn),連接,
∴BB′=AA′=PQ,
∵BB′//AA′,
∴四邊形AA′BB′,
∴AB′//A′B,
∴∠QAM=∠PA′N,
又∵AQ=A′P,∠AQM=∠A′PN,
∴△AQM≌△A′PN,
∴AM=A′N,
∴四邊形AA′MN是平行四邊形,
∴AA′//MN,
∴MN⊥l1,
同理:BN=B′M,
∴AM+BN=AB′距離最短,
∴即為所求.
故答案為:取格點(diǎn),連接,(使),取格點(diǎn)、,連接(使),與交于點(diǎn);同理作點(diǎn);連接與交于點(diǎn),連接與交于點(diǎn),連接,即為所求
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,M、N是邊長(zhǎng)為6的正方形ABCD的邊CD上的兩個(gè)動(dòng)點(diǎn),滿足AM=BN,連接AC交BN于點(diǎn)E,連接DE交AM于點(diǎn)F,連接CF.
(1)求證:DE=BE;
(2)判斷DE與AM的位置關(guān)系,并證明;
(3)判斷線段CF是否存在最小值?若存在,求出來(lái),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為E和F,且EF=6,則平移的距離為( )
A. 2 B. 2或6 C. 4或6 D. 1或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的邊在軸上,與交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).若將菱形向左平移個(gè)單位,使點(diǎn)落在該反比例函數(shù)圖象上,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鐵嶺“荷花節(jié)”舉辦了為期15天的“荷花美食”廚藝秀.小張購(gòu)進(jìn)一批食材制作特色美食,每盒售價(jià)為50元,由于食材需要冷藏保存,導(dǎo)致成本逐日增加,第x天(1≤x≤15且x為整數(shù))時(shí)每盒成本為p元,已知p與x之間滿足一次函數(shù)關(guān)系;第3天時(shí),每盒成本為21元;第7天時(shí),每盒成本為25元,每天的銷售量為y盒,y與x之間的關(guān)系如下表所示:
第x天 | 1≤x≤6 | 6<x≤15 |
每天的銷售量y/盒 | 10 | x+6 |
(1)求p與x的函數(shù)關(guān)系式;
(2)若每天的銷售利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式,并求出第幾天時(shí)當(dāng)天的銷售利潤(rùn)最大,最大銷售利潤(rùn)是多少元?
(3)在“荷花美食”廚藝秀期間,共有多少天小張每天的銷售利潤(rùn)不低于325元?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的手機(jī),已知每部A型號(hào)手機(jī)的進(jìn)價(jià)比每部B型號(hào)手機(jī)進(jìn)價(jià)多500元,每部A型號(hào)手機(jī)的售價(jià)是2500元,每部B型號(hào)手機(jī)的售價(jià)是2100元.
(1)若商場(chǎng)用50000元共購(gòu)進(jìn)A型號(hào)手機(jī)10部,B型號(hào)手機(jī)20部,求A、B兩種型號(hào)的手機(jī)每部進(jìn)價(jià)各是多少元?
(2)為了滿足市場(chǎng)需求,商場(chǎng)決定用不超過(guò)7.5萬(wàn)元采購(gòu)A、B兩種型號(hào)的手機(jī)共40部,且A型號(hào)手機(jī)的數(shù)量不少于B型號(hào)手機(jī)數(shù)量的2倍.
①該商場(chǎng)有哪幾種進(jìn)貨方式?
②該商場(chǎng)選擇哪種進(jìn)貨方式,獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=4,AB=6,則AE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與二次函數(shù)的圖像交于點(diǎn)A、O,(O是坐標(biāo)原點(diǎn)),點(diǎn)P為二次函數(shù)圖像的頂點(diǎn),OA=,AP的中點(diǎn)為B.
(1)求二次函數(shù)的解析式;
(2)求線段OB的長(zhǎng);
(3)若射線OB上存在點(diǎn)Q,使得△AOQ與△AOP相似,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠長(zhǎng)為18m的墻,另三邊用木欄圍城,木欄長(zhǎng)為32m.
(1)雞場(chǎng)的面積能圍成120m2嗎?
(2)雞場(chǎng)的面積能圍成130m2嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com