【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當(dāng)兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計一個對小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲同學(xué)的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是()的函數(shù),表1中給出了幾組與的對應(yīng)值:
表1:
… | 1 | 2 | 3 | … | ||||
… | 6 | 3 | 2 | 1 | … |
(1)以表中各對對應(yīng)值為坐標(biāo),在圖1的直角坐標(biāo)系中描出各點,用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學(xué)過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;
(2)如果一次函數(shù)圖像與(1)中圖像交于和兩點,在第一、四象限內(nèi)當(dāng)在什么范圍時,一次函數(shù)的值小于(1)中函數(shù)的值?請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點C、點F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點都在反比例函數(shù)的圖象上.
(1)求的值;
(2)如果為軸上一點,為軸上一點,以點為頂點的四邊形是平行四邊形,試求直線的函數(shù)表達(dá)式;
(3)將線段沿直線進(jìn)行對折得到線段,且點始終在直線上,當(dāng)線段與軸有交點時,則的取值范圍為_______(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,
(1)圖①中共有 對相似三角形,寫出來分別為 (不需證明);
(2)已知AB=10,AC=8,請你求出CD的長;
(3)在(2)的情況下,如果以AB為x軸,CD為y軸,點D為坐標(biāo)原點O,建立直角坐標(biāo)系(如圖②),若點P從點C出發(fā),以每秒1個單位的速度沿線段CB運動,點Q從點B出發(fā),以每秒1個單位的速度沿線段BA運動,其中一點最先到達(dá)線段的端點時,兩點即刻同時停止運動;設(shè)運動時間為t秒,是否存在點P,使以點B,P,Q為頂點的三角形與△ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為改善辦學(xué)條件,計劃采購A、B兩種型號的空調(diào),已知采購3臺A型空調(diào)和2臺B型空調(diào),需費用39000元;4臺A型空調(diào)比5臺B型空調(diào)的費用多6000元.
(1)求A型空調(diào)和B型空調(diào)每臺各需多少元;
(2)若學(xué)校計劃采購A、B兩種型號空調(diào)共30臺,且A型空調(diào)的臺數(shù)不少于B型空調(diào)的一半,兩種型號空調(diào)的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當(dāng)點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標(biāo);
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)(a、b、c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①當(dāng)時,;②;③;④3a+c>0,其中正確的是( )
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com