【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對全班45名學(xué)生進行了一次體育模擬測試(得分均為整數(shù)),成績滿分為10分,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計圖和分析表如下:
初二1班體育模擬測試成績分析表
平均分 | 方差 | 中位數(shù) | 眾數(shù) | |
男生 | 2 | 8 | 7 | |
女生 | 7.92 | 1.99 | 8 |
根據(jù)以上信息,解答下列問題:
(1)這個班共有男生________人,共有女生________人;
(2)補全初二1班體育模擬測試成績分析表.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運費,市場可以調(diào)用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級全體320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準(zhǔn)劃分成“不合格”、“合格”、“優(yōu)秀”三個等級.為了了解電腦培訓(xùn)的效果,用抽簽方式得到其中32名學(xué)生的兩次考試考分等級,所繪制的統(tǒng)計圖如圖所示.試結(jié)合圖示信息回答下列問題:
(1)這32名學(xué)生培訓(xùn)前考分的中位數(shù)所在的等級是 ,培訓(xùn)后考分的中位數(shù)所在的等級是 .
(2)這32名學(xué)生經(jīng)過培訓(xùn),考分等級“不合格” 的百分比由 下降到 .
(3)估計該校整個八年級中,培訓(xùn)后考分等級為“合格”與“優(yōu)秀”的學(xué)生共有 名.
(4)你認(rèn)為上述估計合理嗎:理由是什么?
答: ,理由: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個角的平分線 這個角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQ與PN成180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.
(3)當(dāng)t為何值時,射線PM是∠QPN的“巧分線”;
(4)若射線PM同時繞點P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN的“巧分線”時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(1)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序號).
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)計算:(3﹣π)0﹣ +|3﹣ |+(tan30°)﹣1
(2)定義新運算:對于任意實數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運算. 比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
探究1:如圖l,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90+∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究3:如圖3中, O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對學(xué)生的學(xué)習(xí)和生活非常有益某中學(xué)為了了解七年級學(xué)生的早鍛煉情況,校政教處在七年級隨機抽取了部分學(xué)生,并對這些學(xué)生通常情況下一天的早鍛煉時間分鐘進行了調(diào)查現(xiàn)把調(diào)查結(jié)果分為A,B,C,D四組,如下表所示;同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.
組別 | 早鍛煉時間 |
A | |
B | |
C | |
D |
請根據(jù)以上提供的信息,解答下列問題:
扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;
補全頻數(shù)分布直方圖;
已知該校七年級共有1200名學(xué)生,請你估計這個年級學(xué)生中有多少人一天早鍛煉的時間不少于20分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正確的是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com