(2012•啟東市模擬)如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA=   
【答案】分析:如圖,因為∠C=90°,易得AB=10;又因為⊙O為△ABC的內(nèi)切圓,易得四邊形OFCG是正方形,設(shè)半徑為x,列方程即可求得;進一步設(shè)AE=y,根據(jù)三角形內(nèi)切圓的性質(zhì),即可求得y的值,則易得tan∠ODA.
解答:解:連接OE,OF,OG;
∵∠C=90°,AC=6,BC=8,
∴AB=10,
∵⊙O為△ABC的內(nèi)切圓,
∴OG⊥BC,OF⊥AC,OE⊥AB,AF=AE,CF=CG,
∴∠OGC=∠OFC=∠OED=90°;
∵∠C=90°,
∴四邊形OFCG是矩形,
∵OG=OF,
∴四邊形OFCG是正方形;
設(shè)OF=x,則CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4;
∵點D是斜邊AB的中點,
∴AD=AB=5,
∴DE=AD-AE=1,
∴tan∠ODA==2.
點評:此題考查了三角形內(nèi)切圓的性質(zhì).注意切線長定理.還要注意直角三角形的內(nèi)切圓中,如果連接過切點的半徑,可以得到一個正方形,借助于方程即可求得半徑的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•啟東市模擬)(1)化簡(
x+1
x
-
x
x-1
1
(x-1)2
;
(2)解方程:
1
x-2
=
3-x
2-x
-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市中考模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2012•啟東市模擬)如圖的平面直角坐標系中,拋物線交x軸于A、B兩點(點B在點A的右側(cè)),交y軸于點C,以O(shè)C、OB為兩邊作矩形OBDC,CD交拋物線于G.
(1)求OC和OB的長;
(2)拋物線的對稱軸l在邊OB(不包括O、B兩點)上作平行移動,交x軸于點E,交CD于點F,交BC于點M,交拋物線于點P.設(shè)OE=m,PM=h,求h與m的函數(shù)關(guān)系式,并求出PM的最大值;
(3)連接PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△BEM相似?若存在,直接求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省汕頭市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2012•啟東市模擬)如圖的平面直角坐標系中,拋物線交x軸于A、B兩點(點B在點A的右側(cè)),交y軸于點C,以O(shè)C、OB為兩邊作矩形OBDC,CD交拋物線于G.
(1)求OC和OB的長;
(2)拋物線的對稱軸l在邊OB(不包括O、B兩點)上作平行移動,交x軸于點E,交CD于點F,交BC于點M,交拋物線于點P.設(shè)OE=m,PM=h,求h與m的函數(shù)關(guān)系式,并求出PM的最大值;
(3)連接PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△BEM相似?若存在,直接求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市天一實驗學(xué)校中考數(shù)學(xué)三模試卷(解析版) 題型:選擇題

(2012•啟東市模擬)如圖,點E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市海淀區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2012•啟東市模擬)如圖,點E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案