【題目】如圖,A,B,C為一個平行四邊形的三個頂點(diǎn),且A,B,C三點(diǎn)的坐標(biāo)分別為(3,3),(6,4),(4,6).
(1)請直接寫出這個平行四邊形第四個頂點(diǎn)的坐標(biāo);
(2)求這個平行四邊形的面積.
【答案】(1) (7,7)或(1,5)或(5,1)(2)8
【解析】試題分析:(1)本題應(yīng)從BC為對角線、AC為對角線、AB為對角線三種情況入手討論,即可得出第四個點(diǎn)的坐標(biāo).
(2)解本題時應(yīng)將三角形進(jìn)行分化,化為幾個直角三角形的和,解出面積和,乘以2即為平行四邊形的面積
試題解析:
(1)BC為對角線時,第四個點(diǎn)坐標(biāo)為(7,7);AB為對角線時,第四個點(diǎn)為(5,1);當(dāng)AC為對角線時,第四個點(diǎn)坐標(biāo)為(1,5).
(2 ) 以A,B,C為頂點(diǎn)的三角形的面積為3×3-×3×1-×2×2-×1×3=4.
所以,這個平行四邊形的面積為4×2=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值: 2(m2 mn 1) 3(m2 2mn 4) ,其中 m ,n 3 .
(2)已知 2a b 5 0 ,求整式 6a b 與 2a 3b 27 的和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個分別含有30°,45°角的一副直角三角板.
(1)如圖1疊放在一起
若OC恰好平分∠AOB,則∠AOD= 度;
若∠AOC=40°,則∠BOD= 度;
(2)如圖2疊放在一起,∠AOD=4∠BOC,試計算∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形向右平移2個單位長度,再向上平移3個單位長度,則平移后三個頂點(diǎn)的坐標(biāo)分別是( )
A. (2,2),(3,4),(1,7) B. (2,2),(4,3),(1,7)
C. (-2,2),(3,4),(1,7) D. (2,-2),(4,3),(1,7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷某種玩具,該玩具每個進(jìn)價 20 元,為進(jìn)行促銷,商店制定如下“優(yōu)惠” 方案:如果一次銷售數(shù)量不超過 5 個,則每個按 50 元銷售:如果一次銷售數(shù)量超過 5 個,則每增加一個,所有玩具均降低 1 元銷售,但單價不得低于 30 元,一次銷售該玩具的單價 y(元)與銷售數(shù)量 x(個)之間的函數(shù)關(guān)系如下圖所示.
(1)結(jié)合圖形,求出 m 的值;射線 BC 所表示的實(shí)際意義是什么;
(2)求線段 AB 滿足的 y 與 x 之間的函數(shù)解析式,并直接寫出自變量的取值范圍;
(3)當(dāng)銷售 15 個時,商店的利潤是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,點(diǎn) M 是正方形 ABCD 的邊 BC 上一點(diǎn),點(diǎn) N 是 CD 延長線上一點(diǎn), 且BM=DN,則線段 AM 與 AN 的關(guān)系.
(2)如圖②,在正方形 ABCD 中,點(diǎn) E、F分別在邊 BC、CD上,且∠EAF=45°,判斷 BE,DF,EF 三條線段的數(shù)量關(guān)系,并說明理由.
(3)如圖③,在四邊形 ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,點(diǎn)E、F分別在邊 BC、CD 上,且∠EAF=45°,若 BD=5,EF=3,求四邊形 BEFD 的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH四個頂點(diǎn)分別在菱形ABCD的四條邊上,BE=BF,將△AEH,△CFG分別沿邊EH,F(xiàn)G折疊,當(dāng)重疊部分為菱形且面積是菱形ABCD面積的 時,則 為( )
A.
B.2
C.
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com