【題目】如圖,在ABC中,AB6AC4,∠ABC和∠ACB的平分線交于點(diǎn)E,過點(diǎn)EMNBC分別交AB、ACMN,則AMN的周長為(  )

A. 12B. 10C. 8D. 不確定

【答案】B

【解析】

根據(jù)角平分線的定義可得∠ABE=∠CBE,∠ACE=∠BCE,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CBE=∠BEM,∠BCE=∠CEN,然后求出∠ABE=∠BEM,∠ACE=∠CEN,根據(jù)等角對(duì)等邊可得BMME,CNNE,然后求出AMN的周長=AB+AC

解:∵∠ABC和∠ACB的平分線交于點(diǎn)E,

∴∠ABE=∠CBE,∠ACE=∠BCE,

MNBC,

∴∠CBE=∠BEM,∠BCE=∠CEN,

∴∠ABE=∠BEM,∠ACE=∠CEN

BMME,CNNE,

∴△AMN的周長=AM+ME+AN+NEAB+AC

ABAC4,

∴△AMN的周長=6+410

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)Dy軸上,A(﹣3,0),B1,b),則正方形ABCD的面積為( 。

A.34B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正五邊形與一個(gè)正方形的邊長正好相等,在它們相接的地方,形成一個(gè)完整的“蘋果”圖案(如圖).如果讓正方形沿著正五邊形的四周滾動(dòng),并且始終保持正方形和正五邊形有兩條邊鄰接,那么第一次恢復(fù)蘋果的圖形時(shí),正方形要繞五邊形轉(zhuǎn)( )圈.

A. 4 B. 3 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,對(duì)角線交于點(diǎn),將過點(diǎn)的直線繞點(diǎn)旋轉(zhuǎn),交射線于點(diǎn)于點(diǎn),于點(diǎn),連接.

如圖當(dāng)點(diǎn)與點(diǎn)重合時(shí),請(qǐng)直接寫出線段的數(shù)量關(guān)系;

如圖,當(dāng)點(diǎn)在線段上時(shí),有什么數(shù)量關(guān)系?請(qǐng)說明你的結(jié)論;

如圖,當(dāng)點(diǎn)在線段的延長線上時(shí),有什么數(shù)量關(guān)系?請(qǐng)說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).

(1)求二次函數(shù)的解析式;

(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);

(3)二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)C,使得CBD的周長最?若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.

(1)試說明:AE=AF;

(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),試說明:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善教室空氣環(huán)境,某校九年級(jí)1班班委會(huì)計(jì)劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價(jià)格之和是12元.班委會(huì)決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數(shù)量正好是吊蘭數(shù)量的兩倍.

(1)分別求出每盆綠蘿和每盆吊蘭的價(jià)格;

(2)該校九年級(jí)所有班級(jí)準(zhǔn)備一起到該基地購買綠蘿和吊蘭共計(jì)90盆,其中綠蘿數(shù)量不超過吊蘭數(shù)量的一半,該基地特地對(duì)吊蘭價(jià)格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時(shí),超過部分的吊蘭每盆的價(jià)格打8折,根據(jù)該基地的優(yōu)惠信息,九年級(jí)購買這兩種綠植各多少盆時(shí)總費(fèi)用最少?最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).

(1)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,請(qǐng)寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;

(2)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點(diǎn)M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正三角形紙片剪成四個(gè)小正三角形,得到4個(gè)小正三角形,稱為第一次操作;然后,將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到7個(gè)小正三角形,稱為第二次操作;再將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到10個(gè)小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到2014個(gè)小正三角形,則需要操作的次數(shù)是(  )次.

A.669B.670C.671D.672

查看答案和解析>>

同步練習(xí)冊(cè)答案