【題目】如圖:正方形ABCD的面積是1,E、F分別是BC、DC的中點,則以EF為邊的正方形EFGH的周長是( )
A. +1
B.
C.2 +1
D.2
【答案】D
【解析】解:∵正方形ABCD的面積為1,
∴BC=CD= =1,∠BCD=90°,
∵E、F分別是BC、CD的中點,
∴CE= BC= ,CF= CD= ,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF= CE= ,
∴正方形EFGH的周長=4EF=4× =2 ;
所以答案是2 .
【考點精析】根據(jù)題目的已知條件,利用三角形中位線定理和正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】小明統(tǒng)計了最近一周王奶奶平均每天賣出的雪糕的五個牌子:A、B、C、D、E雪糕的數(shù)量,具體數(shù)據(jù)如下:A:133,B:182,C:68,D:39,E:98,則B種雪糕出現(xiàn)的頻數(shù)是( )
A. 5 B. 520
C. 182 D. 133
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成題目:
(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡單說明理由;
(3)運用(1)、(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,要測量池塘兩岸相對的兩點B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y關(guān)于x的一次函數(shù)y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.
(1)若該一次函數(shù)的y值隨x的值的增大而增大,求該一次函數(shù)的表達式,并在如圖所示的平面直角坐標系中畫出該一次函數(shù)的圖象;
(2)若該一次函數(shù)的圖象經(jīng)過點(﹣2,13),求該函數(shù)的圖象與坐標軸圍成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com