【題目】用20cm長的繩子圍成一個矩形,如果這個矩形的一邊長為xcm,面積是Scm2,則S與x的函數(shù)關(guān)系式為( )
A.S=x(20﹣x)B.S=x(20﹣2x)C.S=x(10﹣x)D.S=2x(10﹣x)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,則a與c平行嗎?為什么?
解:a與c平行.
理由:因為∠1=∠2( ),
所以a∥b ( ).
因為∠3+∠4=180°( ),
所以b∥c ( ).
所以a∥c ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( )
A.x2﹣2x﹣1=(x﹣1)2
B.2x2﹣2=2(x+1)(x﹣1)
C.x2y﹣xy=y(x2﹣x)
D.x2﹣2x+2=(x﹣1)2+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式:y3﹣4y2+4y=( )
A.y(y2﹣4y+4)
B.y(y﹣2)2
C.y(y+2)2
D.y(y+2)(y﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列4個命題中:①過直線外一點有且只有一條直線與這條直線平行;②平行于同一條直線的兩條直線平行;③兩條直線被第三條直線所截,同旁內(nèi)角互補;④對頂角相等.其中真命題有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時,仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=kx+2與x軸交于點A(m,0)(m>4),與y軸交于點B,拋物線y2=ax2﹣4ax+c(a<0)經(jīng)過A,B兩點.P為線段AB上一點,過點P作PQ∥y軸交拋物線于點Q.
(1)當(dāng)m=5時,
①求拋物線的關(guān)系式;
②設(shè)點P的橫坐標(biāo)為x,用含x的代數(shù)式表示PQ的長,并求當(dāng)x為何值時,PQ=;
(2)若PQ長的最大值為16,試討論關(guān)于x的一元二次方程ax2﹣4ax﹣kx=h的解的個數(shù)與h的取值范圍的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,則A﹣B的值與﹣9a3b2的公因式為( )
A.a
B.﹣3
C.9a3b2
D.3a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com