【題目】某學(xué)校在AB兩個(gè)校區(qū)各有九年級(jí)學(xué)生200人,為了解這兩個(gè)校區(qū)九年級(jí)學(xué)生的教學(xué)學(xué)業(yè)水平的情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù):從A、B兩個(gè)校區(qū)各隨機(jī)抽取20名學(xué)生,進(jìn)行了數(shù)學(xué)學(xué)業(yè)水平測(cè)試,測(cè)試成績(jī)(百分制)如下:

A校區(qū)  86  74  78  81  76  75  86  70  75  90

     75  79  81  70  74  80  87  69  83  77

B校區(qū)  80  73  70  82  71  82  83  93  77  80

     81  93  81  73  88  79  81  70  40  83

整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)x

人數(shù)

校區(qū)

40≤x50

50≤x60

60≤x70

70≤x80

80≤x90

90≤x≤100

A

0

0

1

11

7

1

B

(說(shuō)明:成績(jī)80分及以上的學(xué)業(yè)水平優(yōu)秀,7079分為淡定業(yè)水平良好,6069分為學(xué)業(yè)水平合格,60分以下為學(xué)業(yè)水平不合格)

分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

校區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

A

78.3

m

75

B

78

80.5

81

其中m   

得出結(jié)論:a.估計(jì)B校區(qū)九年級(jí)數(shù)學(xué)學(xué)業(yè)水平在優(yōu)秀以上的學(xué)生人數(shù)為  ;

b.可以推斷出  校區(qū)的九年級(jí)學(xué)生的數(shù)學(xué)學(xué)業(yè)水平較高,理由為   (至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性).

【答案】分析數(shù)據(jù):77.5,得出結(jié)論:a,120b,B,B校區(qū)中位數(shù)、眾數(shù)比A校區(qū)大,可見(jiàn)B校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在80.5分以上,而A校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在77.5分以上,B校區(qū)81分的最多,A校區(qū)75分最多.

【解析】

根據(jù)中位數(shù)意義和計(jì)算方法計(jì)算解決即可;先算出樣本中B校區(qū)九年級(jí)數(shù)學(xué)優(yōu)秀學(xué)生人數(shù)的比例,然后與總?cè)藬?shù)相乘即可解決結(jié)論a;根據(jù)比較AB兩校區(qū)中位數(shù)和眾數(shù)的比較差距,可以推斷出兩校區(qū)哪個(gè)校區(qū)的數(shù)學(xué)學(xué)業(yè)水平高.

解:∵A組有20人,所以中位數(shù)為第10和第11個(gè)數(shù)的平均數(shù),

∴根據(jù)表格可知,第10和第11個(gè)數(shù)落在70≤x80,為

a.∵樣本中B校區(qū)九年級(jí)數(shù)學(xué)優(yōu)秀學(xué)生人數(shù)為12人,優(yōu)秀率為,

∴估計(jì)B校區(qū)九年級(jí)數(shù)學(xué)學(xué)業(yè)水平在優(yōu)秀以上的學(xué)生人數(shù)為200×60%120(人)

b.由此可以推斷B校區(qū)的九年級(jí)學(xué)生的數(shù)學(xué)學(xué)業(yè)水平較高,理由是B校區(qū)中位數(shù)比A校區(qū)大,眾數(shù)比A校區(qū)大,可見(jiàn)B校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在80.5分以上,而A校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在77.5分以上,B校區(qū)81分的最多,A校區(qū)75分最多.

故答案為:77.5,120,B,B校區(qū)中位數(shù)、眾數(shù)比A校區(qū)大,可見(jiàn)B校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在80.5分以上,而A校區(qū)半數(shù)學(xué)生分?jǐn)?shù)在77.5分以上,B校區(qū)81分的最多,A校區(qū)75分最多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,BC = 3,AC = 4,點(diǎn)D為邊AB上一點(diǎn).將△BCD沿直線CD翻折,點(diǎn)B落在點(diǎn)E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)服裝部分為了解服裝的銷(xiāo)售情況,統(tǒng)計(jì)了每位營(yíng)業(yè)員在某月的銷(xiāo)售額(單位:萬(wàn)元),并根據(jù)統(tǒng)計(jì)的這組銷(xiāo)售額的數(shù)據(jù),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

該商場(chǎng)服裝營(yíng)業(yè)員的人數(shù)為 ,圖①中m的值為 ;

求統(tǒng)計(jì)的這組銷(xiāo)售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明主設(shè)計(jì)的作一個(gè)含30°角的直角三角形的尺規(guī)作圖過(guò)程.

已知:直線l

求作:ABC,使得∠ACB90°,∠ABC30°

作法:如圖,

①在直線l上任取兩點(diǎn)OA;

②以點(diǎn)O為圓心,OA長(zhǎng)為半徑畫(huà)弧,交直線l于點(diǎn)B

③以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)C

④連接AC,BC

所以ABC就是所求作的三角形.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程:

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:在⊙O中,AB為直徑,

∴∠ACB90°(①  ),(填推理的依據(jù))

連接OC

OAOCAC,

∴∠CAB60°

∴∠ABC30°(②   ),(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1kx+bk≠0)和反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,2),Bn,﹣4

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出不等式y1y2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)測(cè)驗(yàn)中,八年級(jí)(1)班的成績(jī)?nèi)缦卤恚?/span>

分?jǐn)?shù)

65

70

75

80

85

90

95

100

人數(shù)

2

3

10

6

4

7

6

2

1)本次數(shù)學(xué)測(cè)驗(yàn)成績(jī)的平均數(shù),中位數(shù),眾數(shù)各是多少?

2)若老師把人數(shù)中的數(shù)據(jù)“10”看成了“9”,數(shù)據(jù)“7”看成了“8”,則平均數(shù),中位數(shù),眾數(shù)中不受影響的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)矩形紙片ABCD,AB12,BC6,點(diǎn)EBC邊上,將△CDE沿DE折疊,點(diǎn)C落在C'處;DC',EC'分別交ABF,G,若GEGF,則sinCDE的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtEBC中,∠B90°ABE邊上一點(diǎn),以邊AC上的點(diǎn)O為圓心、OA為半徑的圓OEC相切,D為切點(diǎn),ADBC

1)求證:∠E=∠ACB

2)若AD1,,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案