【題目】據(jù)農(nóng)業(yè)農(nóng)村部新聞部辦公室2018年10月15日消息,江寧省發(fā)現(xiàn)疑似非洲豬瘟疫情,此次豬瘟疫情發(fā)病急,蔓延速度快.當(dāng)政府和企業(yè)迅速進(jìn)行了豬瘟疫情排査和處置.在疫情排査過程中.某農(nóng)場第一天發(fā)現(xiàn)3頭生豬發(fā)病.兩天后發(fā)現(xiàn)共有363頭生豬發(fā)病,求每頭發(fā)病生豬平均每天傳染多少頭生豬?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N,則MN=__________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,正比例函數(shù)與反比例函數(shù)的圖象交于點。
(1)求這兩個函數(shù)的表達(dá)式;
(2)如圖1,若,且其兩邊分別與兩坐標(biāo)軸的正半軸交于點、點。求四邊形的面積;
(3)如圖2,點是反比例函數(shù)圖象上的一點,過點作x軸、軸的垂線,垂足分別為、,交直線于點,過作x軸的垂線,垂足為。設(shè)點的橫坐標(biāo)為,當(dāng)時,是否存在點,使得四邊形為正方形?若存在,求出點坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在中,AC=BC,點D是邊AB的中點,E,F(xiàn)分別是AC和BC的中點,分別以CE,CF為一邊向上作兩個全等的矩形CEGH和矩形CFMN(其中EG=FM),依次連結(jié)DG、DM、GM。
(1)求證:是等腰三角形。
(2)如圖,若將上圖中的兩個全等的矩形改為兩個全等的正三角形(和),其他條件不變。請?zhí)骄?/span>的形狀,并說明理由。
(3)若將上圖中的兩個全等的矩形改為兩個正方形,并把中的邊BC縮短到如圖形狀,請?zhí)骄?/span>的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④∠DFE=2∠DAC ;⑤若連接CH,則CH∥EF.其中正確的個數(shù)為( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中, ①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④為常量.其中正確的有______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com