【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C的中點,則下列結(jié)論:①OCAE;②ECBC;③∠DAE=∠ABE;④ACOE,其中正確的有( 。

A.1B.2C.3D.4

【答案】C

【解析】

C為弧EB中點,利用垂徑定理的逆定理得到OC垂直于BE,根據(jù)等弧對等弦得到BC=EC,再由AB為直角,利用圓周角定理得到AE垂直于BE,進而得到一對直角相等,利用同位角相等兩直線平行得到OCAE平行,由AD為圓的切線,利用切線的性質(zhì)得到ABDA垂直,利用同角的余角相等得到∠DAE=ABE,根據(jù)E不一定為弧AC中點,可得出ACOE不一定垂直,即可確定出結(jié)論成立的序號.

解:∵C的中點,即

OCBE,BCEC,選項②正確;

設(shè)AE與CO交于F,∴∠BFO90°,

AB為圓O的直徑,

AEBE,即∠BEA90°,

∴∠BFO=∠BEA

OCAE,選項①正確;

AD為圓的切線,

∴∠DAB90°,即∠DAE+EAB90°,

∵∠EAB+ABE90°,

∴∠DAE=∠ABE,選項③正確;

E不一定為中點,故E不一定是中點,選項④錯誤,

則結(jié)論成立的是①②③,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C的中點,連接AC并延長至點D,使CDAC,點EOB上一點,且CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時,求BH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一場足球比賽中,一球員從球門正前方10米處起腳射門,當(dāng)球飛行的水平距離為6米時達到最高點,此時球高為3米.

1)如圖建立直角坐標(biāo)系,當(dāng)球飛行的路線為一拋物線時,求此拋物線的解析式.

2)已知球門高為2.44米,問此球能否射中球門(不計其它情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠A60°,點D是線段BC的中點,∠EDF120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F

1)如圖1,若DFAC,垂足為F,證明:DEDF

2)如圖2,將∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點FDEDF仍然成立嗎?說明理由.

3)如圖3,將∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,DEDF仍然成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的不斷提高,龍崗區(qū)家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2017年底擁有家庭轎車81輛,2019年底家庭轎車的擁有量達到144輛.

1)若該小區(qū)2017年底到2019年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2020年底家庭轎車將達到多少輛?

2)為了緩解停車矛盾,該小區(qū)決定投資25萬元再建造若干個停車位.據(jù)測算,建造費用分別為室內(nèi)車位6000/個,露天車位2000/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的3倍,但不超過室內(nèi)車位的4.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)將△ABC向上平移3個單位長度,畫出平移后的△A1B1C1;

(2)寫出A1、C1的坐標(biāo);

(3)將△A1B1C1B1逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2,求線段B1C1旋轉(zhuǎn)過程中掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△DEF中,EF10DF6,DE8,以EF的中點O為圓心,作半圓與DE相切,點A、B分別是半圓和邊DF上的動點,連接AB,則AB的最大值與最小值的和是( 。

A.6B.2+1C.D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN45°

1)如圖1,當(dāng)點M、N分別在線段BCDC上時,請直接寫出線段BMMN、DN之間的數(shù)量關(guān)系;

2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;

3)如圖3,當(dāng)點MN分別在CB、DC的延長線上時,若CNCD6,設(shè)BDAM的延長線交于點P,交ANQ,直接寫出AQ、AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假快要到了,某市準(zhǔn)備組織同學(xué)們分別到A,BCD四個地方進行夏令營活動,前往四個地方的人數(shù)如圖所示.

1)去B地參加夏令營活動人數(shù)占總?cè)藬?shù)的40%,根據(jù)統(tǒng)計圖求去B地的人數(shù)?

2)若一對姐弟中只能有一人參加夏令營,姐弟倆提議讓父親決定.父親說:現(xiàn)有4張卡片上分別寫有1,2,3,4四個整數(shù),先讓姐姐隨機地抽取一張后放回,再由弟弟隨機地抽取一張.若抽取的兩張卡片上的數(shù)字之和是5的倍數(shù)則姐姐參加,若抽取的兩張卡片上的數(shù)字之和是3的倍數(shù)則弟弟參加.用列表法或樹形圖分析這種方法對姐弟倆是否公平?

查看答案和解析>>

同步練習(xí)冊答案