【題目】如圖,反比例函數(shù)k≠0)圖象與一次函數(shù)圖象相交于A1,3),Bm,1)兩點.

1)求反比例函數(shù)和一次函數(shù)的表達式.

2)已知點Pa0)(a0),過點P作平行于y軸的直線,在第一象限內(nèi)與一次函數(shù)的圖象相交于點M,與反比例函數(shù)上的圖象相交于點N.若PMPN,結(jié)合函數(shù)圖象直接寫出a的取值范圍.

【答案】1,;(21a3

【解析】

1)把A代入反比例函數(shù)的解析式即可求得k的值,然后求得B的值,利用待定系數(shù)法即可求得一次函數(shù)的解析式;

2)畫出函數(shù)圖象,根據(jù)圖象可得解.

1)∵函數(shù)k≠0)圖象經(jīng)過點A1,3),

k=1×3=3

∴反比例函數(shù)的表達式是,

又函數(shù)經(jīng)過點Bm,1),

m=3

B3,1),

A1,3)代入y=-x+b,得b=4

∴一次函數(shù)的表達式是

2)如圖所示,

由圖象可得:當1a3時,PMPN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠BCA=90°,ACBC,點DBC的中點,點F在線段AD上,DFCD,BFCAE點,過點ADA的垂線交CF的延長線于點G,下列結(jié)論:CF2EFBF;②AG=2DC;③AEEF;④AFECEFEB.其中正確的結(jié)論有(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2-2x+m=0,有兩個不相等的實數(shù)根.

⑴求實數(shù)m的最大整數(shù)值;

⑵在⑴的條下,方程的實數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作體驗)

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O

第二步:連接OA,OB;

第三步:以O為圓心,OA長為半徑作⊙O,交l;

所以圖中即為所求的點.(1)在圖②中,連接,說明∠=30°

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

(深入探究)

3)已知矩形ABCD,BC=2AB=mPAD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為________

4)已知矩形ABCD,AB=3BC=2,P為矩形ABCD內(nèi)一點,且∠BPC=135°,若點P繞點A逆時針旋轉(zhuǎn)90°到點Q,則PQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)yx的圖像與反比例函數(shù)y的圖像交于A,B兩點,且點A的坐標為(6,a).

1)求反比例函數(shù)的表達式;

2)已知點Cb4)在反比例函數(shù)y的圖像上,點Px軸上,若△AOC的面積等于△AOP的面積的兩倍,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受新冠疫情影響,31日起,君樂買菜網(wǎng)絡公司某種蔬菜的銷售價格開始上漲.如圖1,前四周該蔬菜每周的平均銷售價格y(元/kg)與周次xx是正整數(shù),1≤x5)的關系可近似用函數(shù)刻畫;進入第5周后,由于外地蔬菜的上市,該蔬菜每周的平均銷售價格y(元/kg)從第5周的6/kg下降至第6周的5.6/kgy與周次x5≤x≤7)的關系可近似用函數(shù)刻畫.

1)求a,b的值.

2)若前五周該蔬菜的銷售量mkg)與每周的平均銷售價格y(元/kg)之間的關系可近似地用如圖2所示的函數(shù)圖象刻畫,第6周的銷售量與第5周相同:

①求my的函數(shù)表達式;

②在前六周中,哪一周的銷售額w(元)最大?最大銷售額是多少?

3)若該蔬菜第7周的銷售量是100kg,由于受降雨的影響,此種蔬菜第8周的可銷售量將比第7周減少a%a0).為此,公司又緊急從外地調(diào)運了5噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜第8周的銷售價格比第7周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第8周的總銷售額與第7周剛好持平,請通過計算估算出a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在x軸負半軸上,點B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求點A的坐標;

(2)點E在y軸負半軸上,直線ECAB,交線段AB于點C,交x軸于點D,SDOE=16.若反比例函數(shù)y=的圖象經(jīng)過點C,求k的值;

(3)在(2)條件下,點M是DO中點,點N,P,Q在直線BD或y軸上,是否存在點P,使四邊形MNPQ是矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P為二次函數(shù)yx22x3圖象上一點,設這個二次函數(shù)的圖象與x軸交于A,B兩點(AB的右側(cè)),與y軸交于C點,若APC為直角三角形且AC為直角邊,則點P的橫坐標的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)能減排,我市某校準備購買某種品牌的節(jié)能燈,已知3A型節(jié)能燈和5B型節(jié)能燈共需50元,2A型節(jié)能燈和3B型節(jié)能燈共需31元.

1)求1A型節(jié)能燈和1B型節(jié)能燈的售價各是多少元?

2)學校準備購買這兩種型號的節(jié)能燈共200只,要求A型節(jié)能燈的數(shù)量不超過B型節(jié)能燈的數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案