【題目】某校為了解本校九年級(jí)男生“引體向上”項(xiàng)目的訓(xùn)練情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿分15分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)本次抽取樣本容量為 , 扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是度;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300名,請(qǐng)估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名?

【答案】
(1)50;72
(2)解:C類學(xué)生數(shù)為:50﹣10﹣22﹣3=15,

C類占抽取樣本的百分比為:15÷50×100%=30%,

D類占抽取樣本的百分比為:3÷50×100%=6%,

補(bǔ)全的統(tǒng)計(jì)圖如右圖所示,


(3)解:300×30%=90(名)

即該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有90名.


【解析】解:(1)由題意可得,
抽取的學(xué)生數(shù)為:10÷20%=50,
扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是:360°×20%=72°,
故答案為:50,72;
本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖、用本估計(jì)總體,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.(1)根據(jù)統(tǒng)計(jì)圖可以得到抽查的學(xué)生數(shù),從而可以求得樣本容量,由扇形統(tǒng)計(jì)圖可以求得扇形圓心角的度數(shù);(2)根據(jù)統(tǒng)計(jì)圖可以求得C類學(xué)生數(shù)和C類與D類所占的百分比,從而可以將統(tǒng)計(jì)圖補(bǔ)充完整;(3)根據(jù)統(tǒng)計(jì)圖可以估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海靜中學(xué)開(kāi)展以“我最喜愛(ài)的職業(yè)”為主題的調(diào)查活動(dòng),圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛(ài)哪一類?(必選且只選一類)”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜愛(ài)教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若海靜中學(xué)共有1500名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛(ài)律師職業(yè)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠ABD∠BDC的平分線相交于點(diǎn)E,BE交CD于點(diǎn)F, ∠1+∠2=90°.

(1)AB與CD平行嗎?試說(shuō)明理由.

(2)試探究∠2∠3的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分9分)如圖,四邊形ABCDAB∥CD,AB≠CD,BD=AC。

1)求證:AD=BC;

2)若E,F,GH分別是AB,CD,AC,BD的中點(diǎn),求證:線段EF與線段GH互相垂直平分。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)均為1個(gè)單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問(wèn)題:

(1)寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);

(2)畫(huà)出△ABC向右平移6個(gè)單位后得到的圖形△A1B1C1

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD中,∠B60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.

(1)如圖①,若點(diǎn)EBC的中點(diǎn),∠AEF60°,求證:BEDF;

(2)如圖②,若∠EAF60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊△ABC中,點(diǎn)H在邊BC上,點(diǎn)K在邊AC上,且滿足AK=HC,連接AH、BK交于點(diǎn)F.

(1)如圖1,求∠AFB的度數(shù);

(2)如圖2,連接FC,若∠BFC=90°,點(diǎn)G為邊 AC上一點(diǎn),且滿足∠GFC=30°,求證:AGBG

(3)如圖3,在(2)條件下,在BF上取D使得DF=AF,連接CDAHE,若△DEF面積為1, 則△AHC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AD為高線,若AB+BD=CD,AC=4 ,BD=3,則線段BC的長(zhǎng)度為

查看答案和解析>>

同步練習(xí)冊(cè)答案