【題目】如圖,在邊長(zhǎng)均為1個(gè)單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問(wèn)題:
(1)寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)畫出△ABC向右平移6個(gè)單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AE=CF,M、N分別是BE、DF的中點(diǎn),試說(shuō)明四邊形MFNE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以OC、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn),滿足.
則C點(diǎn)的坐標(biāo)為______;A點(diǎn)的坐標(biāo)為______.
已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束的中點(diǎn)D的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為秒問(wèn):是否存在這樣的t,使?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
點(diǎn)F是線段AC上一點(diǎn),滿足,點(diǎn)G是第二象限中一點(diǎn),連OG,使得點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=40°,則當(dāng)∠EBA= 時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校九年級(jí)男生“引體向上”項(xiàng)目的訓(xùn)練情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿分15分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)本次抽取樣本容量為 , 扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是度;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300名,請(qǐng)估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知任意三角形的三邊長(zhǎng),如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問(wèn)題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長(zhǎng),p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:EF∥AD ,∠1=∠2,∠BAC=70°,將求∠AGD的過(guò)程填寫完整:
因?yàn)?/span>EF∥AD,所以∠2=__
又因?yàn)?/span>∠1=∠2,所以∠1=∠3
所以AB∥__
所以∠BAC+__=180°
因?yàn)?/span>∠BAC=70°,所以∠AGD=__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,DE∥BC,F(xiàn)為BC邊上一點(diǎn),連接AF交DE于點(diǎn)G,下列說(shuō)法不正確的是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com