【題目】如圖:EF∥AD ∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整:

因為EF∥AD,所以∠2=__

又因為∠1=∠2,所以∠1=∠3

所以AB∥__

所以∠BAC+__=180°

因為∠BAC=70°,所以∠AGD=__

【答案】∠3 兩直線平行,同位角相等

DG 內(nèi)錯角相等,兩直線平行

∠AGD   110°

【解析】

根據(jù)平行線的性質(zhì)和已知求出∠1=∠3,根據(jù)平行線的判定推出ABDG,根據(jù)平行線的性質(zhì)求出BAC+∠DGA=180°即可.

∵EF∥AD

∴∠2=∠3兩直線平等,同位角相等

又∵∠1=∠2

∴∠1=∠3(等量代換

∴AB∥DG內(nèi)錯角相等,兩直線平等

∴∠BAC+∠AGD=180°(兩直線平等,同旁內(nèi)角互補

∵∠BAC=70°(已知

∴∠AGD=180°-70°=110°等量代換

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學同時從山腳開始爬山,到達山頂后立即下山,在山腳和山頂之間不斷往返運動,已知山坡長為360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,當甲第三次到達山頂時,則此時乙所在的位置是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長均為1個單位的正方形網(wǎng)格圖中,建立了平面直角坐標系xOy,按要求解答下列問題:

(1)寫出△ABC三個頂點的坐標;

(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預(yù)算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.

(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個粒子在第一象限和x,y軸的正半軸上運動,在第一秒內(nèi),它從原點運動到(0,1),接著它按圖所示在x軸、y軸的平行方向來回運動,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒運動一個單位長度,那么2010秒時,這個粒子所處位置為( )

A.(14,44) B.(15,44) C.(44,14) D.(44,15)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊△ABC中,點H在邊BC上,點K在邊AC上,且滿足AK=HC,連接AH、BK交于點F.

(1)如圖1,求∠AFB的度數(shù);

(2)如圖2,連接FC,若∠BFC=90°,點G為邊 AC上一點,且滿足∠GFC=30°,求證:AGBG

(3)如圖3,在(2)條件下,在BF上取D使得DF=AF,連接CDAHE,若△DEF面積為1, 則△AHC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點,點A在點B的左邊,與y軸交于點C,頂點為D,若以BD為直徑的⊙M經(jīng)過點C.

(1)請直接寫出C,D兩點的坐標(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達式;
(3)在拋物線上是否存在點E,使∠EDB=∠CBD?若存在,請求出所有滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中有分別標著數(shù)字1,2,3,4的四個乒乓球,現(xiàn)從袋中隨機摸出兩個乒乓球,則這兩個乒乓球上的數(shù)字之和大于5的概率為(  ).
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案