【題目】如圖,已知拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點,點A在點B的左邊,與y軸交于點C,頂點為D,若以BD為直徑的⊙M經(jīng)過點C.
(1)請直接寫出C,D兩點的坐標(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達式;
(3)在拋物線上是否存在點E,使∠EDB=∠CBD?若存在,請求出所有滿足條件的點E的坐標;若不存在,請說明理由.
【答案】
(1)
解:∵將x=0代入拋物線的解析式得y=﹣3a,
∴點C的坐標是(0,﹣3a).
∵x=﹣ = =1,
∴點D的橫坐標為1.
∵將x=1代入拋物線的解析式得y=a﹣2a﹣3a=﹣4a,
∴點D的坐標是(1,﹣4a).
(2)
解:解:令y=0得:ax2﹣2ax﹣3a=0
∵a≠0,故得x1=﹣1,x2=3
∴A(﹣1,0),B(3,0).
如圖1所示:過點D作DN⊥y軸于點N,則DN=1,CN=﹣4a﹣(﹣3a)=﹣a.
∵BD為⊙M的直徑,
∴∠BCD=90°.
∴∠DCN+∠BCO=90°.
∵∠CDN+∠DCN=90°,
∴∠BCO=∠CDN,
∵∠BOC=∠DNC=90°,
∴△BOC∽△CND.
∴ ,即 ,解得:a=±1(其中a=1舍去),
∴a=﹣1.
∴所求拋物線為y=﹣x2+2x+3.
(3)
解:∵a=﹣1,
∴D(1,4).
∵設(shè)直線BC的解析式為y=kx+b,將B(3,0),C(0,3)代入得: ,解得:k=﹣1,b=3,
∴直線BC為:y=﹣x+3.
如圖2所示:過點D作DE∥BC,交拋物線與點E.
∵DE∥BC,
∴∠EDB=∠CBD.
∴設(shè)直線DE為y=﹣x+b
∵把點D(1,4)代入得:4=﹣1+b,解得:b=5,
∴直線DE為:y=﹣x+5.
解方程組 得: ,
∵D(1,4)
∴E(2,3).
如圖3所示:作∠PDB=∠CBD,DP交BC于點P,交拋物線與點E.
∵∠EDB=∠CBD,
∴PD=PB.
又∵MB=MD,
∴PM⊥BD.
∵B(3,0),D(1,4),
∴直線BD為y=﹣2x+6,且M(2,2)
∴設(shè)直線PM為 ,
∴2=1+b2,
∴b2=1
∴直線PM為:
解方程組 得: ,
∴P( , )
∵D(1,4),P( , )
∴直線PD為:y=﹣7x+11
解方程組 得: ,
∵D(1,4),
∴E(8,﹣45).
綜上所述,在拋物線上存在滿足條件的點E,點E的坐標為E(2,3)或E(8,﹣45).
【解析】(1)將x=0代入拋物線的解析式可得到點C的坐標,依據(jù)拋物線的對稱軸方程可求得點D的橫坐標,然后將點D的橫坐標代入可求得點D的縱坐標;(2)令y=0可求得點A、B的坐標,過點D作DN⊥y軸于點N,則DN=1,CN=﹣a.接下來證明△BOC∽△CND,然后依據(jù)相似三角形的性質(zhì)可求得a的值,從而得到拋物線的解析式;(3)先求得點D的坐標、直線BC的解析式,點D作DE∥BC,交拋物線與點E.設(shè)直線DE的解析式為y=﹣x+b,把點D(1,4)代入直線DE的解析式求得b的值,然后將DE的解析式與拋物線的解析式組成方程可求得點E的坐標;作∠PDB=∠CBD,DP交BC于點P,交拋物線與點E.克證明MP垂直平分BD,從而可求得PM的解析式,然后由PM的解析式和BC的解析式可求得點P的坐標,接下來求得PD的解析式,最后根據(jù)DP的解析式和拋物線的解析式可求得E的坐標.
【考點精析】掌握二次函數(shù)的概念和二次函數(shù)的圖象是解答本題的根本,需要知道一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點,滿足.
則C點的坐標為______;A點的坐標為______.
已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束的中點D的坐標是,設(shè)運動時間為秒問:是否存在這樣的t,使?若存在,請求出t的值;若不存在,請說明理由.
點F是線段AC上一點,滿足,點G是第二象限中一點,連OG,使得點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長,p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:EF∥AD ,∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整:
因為EF∥AD,所以∠2=__
又因為∠1=∠2,所以∠1=∠3
所以AB∥__
所以∠BAC+__=180°
因為∠BAC=70°,所以∠AGD=__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△ECD都是等邊三角形,B、C、D在一條直線上。
求證:(1)BE=AD;
(2) △FCH是等邊三角形
(3)求∠EMD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N.有下列四個結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號全部選對的是( )
A. ①②③
B. ①②④
C. ②③④
D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,F(xiàn)為BC邊上一點,連接AF交DE于點G,下列說法不正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學積極開展“陽光體育”活動,共開設(shè)了跳繩、乒乓球、籃球、跑步四種運動項目.為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出)
(1)求本次被調(diào)查的學生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)根據(jù)統(tǒng)計的數(shù)據(jù)估計該中學3200名學生中最喜愛籃球的人數(shù)約有_____人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com