【題目】某中學(xué)積極開展陽光體育活動,共開設(shè)了跳繩、乒乓球、籃球、跑步四種運動項目.為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出)

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)補全條形統(tǒng)計圖;

(3)根據(jù)統(tǒng)計的數(shù)據(jù)估計該中學(xué)3200名學(xué)生中最喜愛籃球的人數(shù)約有_____人.

【答案】(1)被調(diào)查的學(xué)生有40人;(2)補全條形圖見解析;(3)1200

【解析】(1)根據(jù)兩個圖得10÷25%=40(人);(2)足球人數(shù):40×30%=12(人),畫圖.(3)用樣本估計總體情況:3200×%.

解:(110÷25%=40(人)

答:被調(diào)查的學(xué)生有40人.

2

3)根據(jù)統(tǒng)計的數(shù)據(jù)估計該中學(xué)3200名學(xué)生中最喜愛籃球的人數(shù)約有 1200

故正確答案為:(1)被調(diào)查的學(xué)生有40人;(2)補全條形圖見解析;(3)1200

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點,點A在點B的左邊,與y軸交于點C,頂點為D,若以BD為直徑的⊙M經(jīng)過點C.

(1)請直接寫出C,D兩點的坐標(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達式;
(3)在拋物線上是否存在點E,使∠EDB=∠CBD?若存在,請求出所有滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=30°,ABAC,O是兩條對角線的交點,過點OAC的垂線分別交邊AD,BC于點E,F;點M是邊AB的一個三等分點。則AOEBMF的面積比為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋中有分別標著數(shù)字1,2,3,4的四個乒乓球,現(xiàn)從袋中隨機摸出兩個乒乓球,則這兩個乒乓球上的數(shù)字之和大于5的概率為(  ).
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉(zhuǎn)動,使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<BAD<180°)所有可能符合條件的度數(shù)為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對角線ACBD相交于點O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有質(zhì)地均勻的A、B、C、D四張卡片,上面對應(yīng)的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機抽出一張(不放回),再隨機抽出第二張.
(1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請你用列表或畫樹狀圖的方法,求出出現(xiàn)這種情況的概率.
(2)因為四張卡片上有兩張上的圖形,既是中心對稱圖形,又是軸對稱圖形,所以小明和小東約定做一個游戲,規(guī)則是:如果抽出的兩個圖形,既是中心對稱圖形又是軸對稱圖形,則小明贏;否則,小東贏.問這個游戲公平嗎?為什么?如果不公平,請你設(shè)計一個公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于概率的敘述正確的是( 。
A.某運動員投籃5次,投中4次,投中的概率為0.8
B.任意拋擲一枚硬幣兩次,結(jié)果是兩個都是正面的概率是
C.數(shù)學(xué)選擇題,四個選擇支中有且只有一個正確,如果從中任選一個,選對的概率為
D.飛機失事死亡的概率為0.000000000038,因此乘飛機失事而死亡是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(﹣2,0)、B(4,0)、C(3,3)在拋物線y=ax2+bx+c上,點D在y軸上,且DC⊥BC,∠BCD繞點C順時針旋轉(zhuǎn)后兩邊與x軸、y軸分別相交于點E、F.

(1)求拋物線的解析式;
(2)CF能否經(jīng)過拋物線的頂點?若能,求出此時點E的坐標;若不能,說明理由;
(3)若△FDC是等腰三角形,求點F的坐標.

查看答案和解析>>

同步練習(xí)冊答案