【題目】如圖,已知△ABC和△ECD都是等邊三角形,B、C、D在一條直線上。
求證:(1)BE=AD;
(2) △FCH是等邊三角形
(3)求∠EMD的度數(shù)。
【答案】(1)見解析;(2)見解析;(3)∠EMD=60.
【解析】分析: (1)證明△BCE≌△ACD,再根據(jù)全等三角形的性質(zhì)可得AD=BE; (2)根據(jù)全等三角形的性質(zhì)可得∠BEC=∠ADC,然后根據(jù)三角形內(nèi)角和定理可得∠EMH==∠HCD,進(jìn)而可得答案.
詳解: (1)∵△ABC和△DEC是等邊三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
∴∠ACB+∠ACE=∠ECD+∠ACE,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
AC=BC,∠BCE=∠ACD,CE=CD,
∴△BCE≌△ACD(SAS),
∴AD=BE.
(2)∵△BCE≌△ACD,
∴∠BCE=∠ADC.
∵∠FCE=∠HCD=60°,
在△FCE和△HCD中,
∠BCE=∠ADC,CE =CD,∠FCE=∠HCD,
∴△BCE≌△ACD (ASA),
∴CF =CH.
在△CFH中,
∵ CF=CH , ∠FCH=60°,
∴△FCH是等邊三角形
(3) ∵ △BCE≌△ACD,
∴∠BEC =∠ADC.
在△MHE和△CHD中,
∵∠MEH =∠CDH,
∠MHE =∠CHD(對(duì)頂角相等),
∴∠EMH =∠HCD=60°,
∴∠EMD=60.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這5個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將□ABCD的邊AB延長(zhǎng)至點(diǎn)E,使AB=BE,連接BD,DE,EC,DE交BC于點(diǎn)O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)粒子在第一象限和x,y軸的正半軸上運(yùn)動(dòng),在第一秒內(nèi),它從原點(diǎn)運(yùn)動(dòng)到(0,1),接著它按圖所示在x軸、y軸的平行方向來回運(yùn)動(dòng),(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒運(yùn)動(dòng)一個(gè)單位長(zhǎng)度,那么2010秒時(shí),這個(gè)粒子所處位置為( )
A.(14,44) B.(15,44) C.(44,14) D.(44,15)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C,頂點(diǎn)為D,若以BD為直徑的⊙M經(jīng)過點(diǎn)C.
(1)請(qǐng)直接寫出C,D兩點(diǎn)的坐標(biāo)(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)E,使∠EDB=∠CBD?若存在,請(qǐng)求出所有滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,O是AC的中點(diǎn),AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積為12的平行四邊形ABCD中,過點(diǎn)A作直線BC的垂線交直線BC于點(diǎn)E,過點(diǎn)A作直線CD的垂線交直線CD于點(diǎn)F,若AB=4,BC=6,則CE+CF的值為( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動(dòng),將含30°的三角尺ABC繞頂點(diǎn)A順時(shí)針轉(zhuǎn)動(dòng),使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<∠BAD<180°)所有可能符合條件的度數(shù)為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com