【題目】 如圖,在8×8的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的內(nèi)接格點(diǎn)三角形,設(shè)對(duì)稱軸平行于y軸的拋物線與網(wǎng)格對(duì)角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果ABC是該拋物線的內(nèi)接格點(diǎn)三角形,且AB=3,點(diǎn)A,BC的橫坐標(biāo)xA,xBxC滿足xAxCxB,那么符合上述條件的拋物線的條數(shù)是______

【答案】10

【解析】

由原點(diǎn)出發(fā),尋找一條符合條件的拋物線,繼而在8×8的網(wǎng)格中平移,最后的得到符合條件的拋物線.

解:過點(diǎn)(0,0),(2,4),(33)的拋物線為y=-x2+4x,

將拋物線向上、向右平移一個(gè)單位,得到符合條件的新拋物線;

可平移4次;

開口向下共有5條符合條件的拋物線;

同理,開口向上的也有5條;

共有10條.

故答案為10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB, AB 之間的距離為 2 ,C、D 是直線兩個(gè)動(dòng)點(diǎn)(點(diǎn) C D 點(diǎn)的左側(cè)),且 AB=CD=5.連接 AC、BCBD,將ABC 沿 BC 折疊得到A′BC.若以 A′、CB、D 為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=10,ABAC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,y=PQ2,下列圖象中大致反映yx之間的函數(shù)關(guān)系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小星同學(xué)設(shè)計(jì)的“過直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過程:

已知:如圖,直線l和直線l外一點(diǎn)A

求作:直線AP,使得APl

作法:如圖

在直線l上任取一點(diǎn)BABl不垂直),以點(diǎn)A為圓心,AB為半徑作圓,與直線l交于點(diǎn)C

連接ACAB,延長(zhǎng)BA到點(diǎn)D;

作∠DAC的平分線AP

所以直線AP就是所求作的直線

根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)

2)完成下面的證明

證明:∵ABAC

∴∠ABC=∠ACB   (填推理的依據(jù))

∵∠DAC是△ABC的外角,

∴∠DAC=∠ABC+ACB   (填推理的依據(jù))

∴∠DAC2ABC

AP平分∠DAC

∴∠DAC2DAP

∴∠DAP=∠ABC

APl   (填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EAB邊上一點(diǎn),連接DE,將ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到CDF作點(diǎn)F關(guān)于CD的對(duì)稱點(diǎn),記為點(diǎn)G,連接DG.

1)依題意在圖1中補(bǔ)全圖形;

2)連接BD,EG判斷BDEG的位置關(guān)系并在圖2中加以證明;

(3)當(dāng)點(diǎn)E為線段AB的中點(diǎn)時(shí),直接寫出∠EDG的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 問題:如圖1,在四邊形ADBC中,∠ACB=ADB=90°AD=BD,AC=BC=2,求CD的長(zhǎng).

1)發(fā)現(xiàn):張強(qiáng)同學(xué)解決這個(gè)問題的思路是:將BCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°AED處,點(diǎn)B,C分別落在點(diǎn)AE處(如圖2),易證點(diǎn)C,A,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得到了AC,BC,CD三條線段之間的關(guān)系為:AC+BC=CD,從而求出CD的長(zhǎng)是______ ;

2)應(yīng)用:如圖3,AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且,若AB=5BC=4,求CD的長(zhǎng);

3)拓展:如圖4,∠ACB=90°,AC=BC=2,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足CE=CA,點(diǎn)QAE的中點(diǎn),直接寫出線段PQ的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是平行四邊形,A、C兩點(diǎn)的坐標(biāo)分別為(4,0),(-2,3),拋物線W經(jīng)過O、AC三點(diǎn),D是拋物線W的頂點(diǎn).

1)求拋物線W的解析式及頂點(diǎn)D的坐標(biāo);

2)將拋物線WOABC一起先向右平移4個(gè)單位后,再向下平移m0m3)個(gè)單位,得到拋物線W′O′A′B′C′,在向下平移的過程中,設(shè)O′A′B′C′OABC的重疊部分的面積為S,試探究:當(dāng)m為何值時(shí)S有最大值,并求出S的最大值;

3)在(2)的條件下,當(dāng)S取最大值時(shí),設(shè)此時(shí)拋物線W′的頂點(diǎn)為F,若點(diǎn)Mx軸上的動(dòng)點(diǎn),點(diǎn)N是拋物線W′上的動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M和點(diǎn)N,使得以D、FM、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn),與軸交于

1)求函數(shù)表達(dá)式;

2)點(diǎn)是線段中點(diǎn),點(diǎn)上方拋物線上一動(dòng)點(diǎn),連接.當(dāng)的面積最大時(shí),過點(diǎn)軸垂線,垂足為,點(diǎn)為線段上一動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn),,的對(duì)應(yīng)點(diǎn)分別是,,,點(diǎn)從點(diǎn)出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處,再沿運(yùn)動(dòng)到點(diǎn)處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處停止.求面積的最大值及點(diǎn)經(jīng)過的最短路徑的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案