【題目】如圖,直線AB、CD相交于點(diǎn)O,OE是∠AOD的平分線,若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個(gè)角的大小關(guān)系并證明你的結(jié)論;
(2)求∠BOE的度數(shù).
【答案】(1)∠AOF=∠COF,理由詳見(jiàn)解析;(2)∠BOE=120°.
【解析】
(1)求出∠AOD度數(shù),求出∠AOE,求出∠AOF,即可得出答案;
(2)求出∠BOD度數(shù),求出∠DOE度數(shù),相加即可得出答案.
(1)答:∠AOF=∠COF,
證明:∵O是直線CD上一點(diǎn),
∴∠AOC+∠AOD=180°,
∵∠AOC=60°,
∴∠AOD=180°﹣60°=120°,
∵OE平分∠AOD,
∴.
∵OF⊥OE,
∴∠FOE=90°
∴∠AOF=∠FOE﹣∠AOE=90°﹣60°=30°,
∴∠COF=∠AOC﹣∠AOF=60°﹣30°=30°,
∴∠AOF=∠COF.
(2)解:∵∠AOC=60°,
∴∠BOD=∠AOC=60°,∠AOD=180°﹣60°=120°,
∵OE是∠AOD的平分線,
∴∠DOE=∠AOD=60°,
∴∠BOE=∠BOD+∠DOE=60°+60°=120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的說(shuō)理過(guò)程.
已知:如圖,OA=OB,AC=BC.
試說(shuō)明:∠AOC=∠BOC.
解:在△AOC和△BOC中,
因?yàn)?/span>OA=______,AC=______,OC=______,
所以________≌________(SSS),
所以∠AOC=∠BOC(__________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+k(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk , 當(dāng)k分別為1,2,3,…,199,200時(shí),則S1+S2+S3+…+S199+S200=( 。
A.10000
B.10050
C.10100
D.10150
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦店有A、B兩種型號(hào)的打印機(jī)和C、D、E三種芯片出售.每種型號(hào)的打印機(jī)均需要一種芯片配套才能打。
(1)下列是該店用樹(shù)形圖或列表設(shè)計(jì)的配套方案,①的位置應(yīng)填寫(xiě) , ②的位置應(yīng) 填寫(xiě)
(2)若僅有B型打印機(jī)與E種芯片不配套,則上面(1)中的方案配套成功率是
芯片 | C | D | E |
A | (A,C) | (A,D) | ② |
B | (B,C) | (B,D) | (B,E) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在周長(zhǎng)為12的菱形ABCD中,CE=1,CF=2,若點(diǎn)P為對(duì)角線BD上一動(dòng)點(diǎn),則PE+PF的最小值是( )
A. B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一塊破損的木板.
(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過(guò)點(diǎn) A 作 AM⊥BC 于 M,垂足為 M,畫(huà)出圖形,并寫(xiě)出∠BCD 與∠BAM 的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星期天,玲玲騎自行車到郊外游玩,她離家的距離與時(shí)間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象回答下列問(wèn)題.
(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?
(2)她何時(shí)開(kāi)始第一次休息?休息了多長(zhǎng)時(shí)間?
(3)她騎車速度最快是在什么時(shí)候?車速多少?
(4)玲玲全程騎車的平均速度是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com