18.如圖,在平面直角坐標(biāo)系中,射線OA交反比例函數(shù)y=$\frac{1}{x}$(x>0)圖象于點P,點R為反比例函數(shù)y=$\frac{1}{x}$(x>0)圖象上的另一點,且PR=2OP,分別過點P、R作x軸、y軸的平行線,兩線相交于點M(a,b),直線MR交x軸于點B,過點P作y軸的平行線分別交直線OM和x軸于點Q、H,連接RQ.
(1)求出點P、R的坐標(biāo)和直線OM 的解析式(用含a、b 的式子表示);
(2)試探究∠MOB和∠AOB之間的數(shù)量關(guān)系,并說明理由;
(3)如果將反比例函數(shù)y=$\frac{1}{x}$(x>0)改為y=$\frac{k}{x}$(k>0,x>0)時,上述(2)中的結(jié)論是否成立是(填“是”或“否”).

分析 (1)直接利用坐標(biāo)的特點和反比例函數(shù)的解析式即可得出結(jié)論;
(2)先判斷出PR,MQ是矩形的對角線,進(jìn)而得出∠PSO=2∠MOB,再由PR=2OP即可得出PS=OP,即:∠PSO=∠POS,最后代換即可得出結(jié)論;
(3)同(2)的方法.

解答 解:(1)∵M(jìn)B⊥x軸,M(a,b),
∴B(a,0),R的橫坐標(biāo)為a,
∵PM⊥y軸,
∴P的縱坐標(biāo)為b,
∵點P,R在反比例函數(shù)y=$\frac{1}{x}$(x>0)圖象上,
∴P($\frac{1}$,b),Q(a,$\frac{1}{a}$),
∵M(jìn)(a,b),
∴直線OM解析式為y=$\frac{a}$x,
(2)∠AOB=3∠MOB,
理由:由題意知,四邊形PQRM是矩形,PR,MQ是矩形對角線,
∴PS=RS=QS,
∴∠MQR=∠PRQ,
∴∠PSO=2∠MQR,
∵QR∥OB,
∴∠MQR=∠MOB,
∴∠PSO=2∠MOB,
∵PR=2OP,
∴PO=PS,
∴∠PSO=∠POS,
∴∠POS=2∠MOB,
∴∠AOB=∠POS+∠MOB=2∠MOB+∠MOB=3∠MOB,
即:∠AOB=3∠MOB,
(3)是成立,
理由:由題意知,四邊形PQRM是矩形,PR,MQ是矩形對角線,
∴PS=RS=QS,
∴∠MQR=∠PRQ,
∴∠PSO=2∠MQR,
∵QR∥OB,
∴∠MQR=∠MOB,
∴∠PSO=2∠MOB,
∵PR=2OP,
∴PO=PS,
∴∠PSO=∠POS,
∴∠POS=2∠MOB,
∴∠AOB=∠POS+∠MOB=2∠MOB+∠MOB=3∠MOB,
即:∠AOB=3∠MOB.

點評 此題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)解析式,待定系數(shù)法,矩形的判定和性質(zhì),三角形的外角的性質(zhì),等腰三角形的性質(zhì),解本題的關(guān)鍵是得出,∠POS=2∠MOB,是一道中等難度的中考?碱}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.顧琪在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是她在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:

(1)顧琪總共剪開了8條棱.
(2)現(xiàn)在顧琪想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為她應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助她在①上補全.
(3)已知顧琪剪下的長方體的長、寬、高分別是6cm、6cm、2cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,AB=AC,BE=CM,BM=CF,∠EMF=50°,則∠A=80度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交于點A(-2,0),
B(4,0)與y軸交于點C.
(Ⅰ)求拋物線的解析式及其頂點D的坐標(biāo);
(Ⅱ)求△BCD的面積;
(Ⅲ)若直線CD交x軸與點E,過點B作x軸的垂線,交直線CD與點F,將拋物線沿其對稱軸向上平移,使拋物線與線段EF總有公共點.試探究拋物線最多可以向上平移多少個單位長度(直接寫出結(jié)果,不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,P為邊長為6的正方形ABCD的邊BC上一動點(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長QE交BA的延長線于點F.
(1)試探究AP與BQ的數(shù)量與位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)E是FQ的中點時,求BP的長;
(3)若BP=2PC,求QF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,拋物線y=ax2-2ax-3a交x軸于點A、B(A左B右),交y軸于點C,S△ABC=6,點P為第一象限內(nèi)拋物線上的一點.
(1)求拋物線的解析式;
(2)若∠PCB=45°,求點P的坐標(biāo);
(3)點Q為第四象限內(nèi)拋物線上一點,點Q的橫坐標(biāo)比點P的橫坐標(biāo)大1,連接PC、AQ,當(dāng)PC=$\frac{5}{9}$AQ時,求點P的坐標(biāo)以及△PCQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.一個口袋中有紅球、白球共20個,這些球除顏色外都相同,將口袋中的球攪拌均勻,從中隨機摸出一個球,記下它的顏色后再放回口袋中,不斷重復(fù)這一過程,共摸了200次球,發(fā)現(xiàn)有140次摸到紅球,估計這個口袋中紅球的數(shù)量為14個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.閱讀材料:如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)平面內(nèi)任意一點M(a,b)為圓心,半徑為r作圓,點P(x,y)在⊙M上,則必有(x-a)2+(y-b)2=r2
嘗試證明:為了證明閱讀材料上的結(jié)論,小明作了輔助線:過點M和點P分別作x軸、y軸的平行線,兩平行線交于點N可得點N的坐標(biāo)是(x,b)(用字母表示),完成小明的證明過程.
結(jié)論應(yīng)用:如圖2,點A、B、C均在坐標(biāo)軸上,OB=OC=OA=4,過A、O、B作⊙D,E是⊙D上任意一點,連接CE,BE.
(1)當(dāng)線段CE經(jīng)過點D時,求點E的坐標(biāo);
(2)在點E的運動過程中,線段CE和線段BE的長度隨之變化,試求CE2+BE2的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.當(dāng)x=-3時,分式$\frac{{x}^{2}-9}{(x-1)(x-3)}$的值為0.

查看答案和解析>>

同步練習(xí)冊答案