【題目】在一組數(shù)據(jù),,中,各數(shù)據(jù)與它們的平均數(shù)的差的絕對值的平均數(shù),記作叫做這組數(shù)據(jù)的“平均差”.一組數(shù)據(jù)的平均差越大,就說明這組數(shù)據(jù)的離散程度越大.則樣本:、、、、的平均差是( )
A. B. 3 C. 6 D.
【答案】A
【解析】
平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).它是反映數(shù)據(jù)集中趨勢的一項指標(biāo).由題中所給信息可以理解為:一組原始數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的絕對值組成的一組新的數(shù)據(jù),再求出該新組的數(shù)據(jù)的平均值.
由題意可知1、2、3、4、5所組成的一組數(shù)的平均值為3,
則由各數(shù)據(jù)與平均數(shù)的差的絕對值組成的新數(shù)據(jù)為:2、1、0、1、2,
此新數(shù)據(jù)的平均值為(2+1+0+1+2)=.
即樣本1、2、3、4、5、6的平均差為.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小晶和小紅玩擲骰子游戲,每人將一個各面分別標(biāo)有數(shù)字、、、、、的正方體骰子擲一次,把兩人擲得的點數(shù)相加,并約定:若點數(shù)之和等于,則小晶贏;若點數(shù)之和等于,則小紅贏;若點數(shù)之和是其他數(shù),則兩人不分勝負(fù),那么( )
A. 小晶贏的機(jī)會大 B. 小紅贏的機(jī)會大
C. 小晶、小紅贏的機(jī)會一樣大 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點D為BC的中點,AB =DE,BE∥AC.
(1)求證:△ABC≌△DEB;
(2)連結(jié)AD、AE、CE,如圖2.
①求證:CE是∠ACB的角平分線;
②請判斷△ABE是什么特殊形狀的三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段AB上一點,且CB=1,分別以AC、BC為邊,在AB的同一側(cè)作等邊△ACD和等邊△CBE,連接DE,AE,∠CDE=30°,則△ADE的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點E為AB邊的中點,連接CE,將△BCE沿著CE翻折,點B落在點G處,連接AG并延長,交CD于F.
(1)求證:四邊形AECF是平行四邊形;
(2)若CF=5,△GCE的周長為20,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+2向下平移1個單位后,得到直線l2,l2交x軸于點A,點P是直線l1上一動點,過點P作PQ∥y軸交l2于點Q
(1)求出點A的坐標(biāo);
(2)連接AP,當(dāng)△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標(biāo);
(3)點B為OA的中點,連接OQ、BQ,若點P在y軸的左側(cè),M為直線y=﹣1上一動點,當(dāng)△PQM與△BOQ全等時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為( )
A. 13B. 14C. 15D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當(dāng)天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)CD:與一次函數(shù)AB:,都經(jīng)過點B(-1,4).
(1)求兩條直線的解析式;
(2)求四邊形ABDO的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com