如圖,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分線交AB于點(diǎn)O,以O(shè)為圓心的⊙O與AC相切于點(diǎn)D.
(1)求證:⊙0與BC相切;
(2)當(dāng)AC=2時,求⊙O的半徑.
(1)過點(diǎn)O作OF⊥BC,垂直為F,連接OD,
∵AC是圓的切線,
∴OD⊥AC,
又OC為∠ACB的平分線,
∴OF=OD,
∴BC與⊙0相切;

(2)由(1)知BC與⊙0相切,
∵D、F為切點(diǎn),
∴OD⊥AC,OF⊥BC,OD=OF,
S△ABC=S△AOC+S△BOC
=
1
2
AC•BC=
1
2
AC•OD+
1
2
BC•OF
∵AC+BC=8,AC=2,
∴BC=6,
1
2
×2×6=
1
2
×2×OD+
1
2
×6×OF,
而OD=OF.
∴OD=
3
2
,
即⊙O的半徑為
3
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,且AB=AC,點(diǎn)D在⊙O上,AD⊥AB于點(diǎn)A,AD與BC交于點(diǎn)E,F(xiàn)在DA的延長線上,且AF=AE.
(1)試判斷BF與⊙O的位置關(guān)系,并說明理由;
(2)若BF=5,cos∠C=
4
5
,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)C,BD⊥PD,垂足為D,連接BC.
求證:(1)BC平分∠PBD;
(2)BC2=AB•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長線上,AD切半圓O于點(diǎn)D,BC⊥AD,垂足為C,若AB=2cm,半圓O的半徑為2cm,則BC的長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A為圓心,AM為半徑作⊙A交BM于N,AN的延長線交BC于D,直線AB交⊙A于P,K兩點(diǎn),作MT⊥BC于T.
(1)求證:AK=MT;
(2)求證:AD⊥BC;
(3)當(dāng)AK=BD時,求證:
BN
BP
=
AC
BM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,P是⊙O外一點(diǎn),PA是⊙O的切線,A是切點(diǎn),B是⊙O上一點(diǎn),且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點(diǎn)Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設(shè)∠AOQ=α,若cosα=
4
5
,OQ=15,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA切⊙O于點(diǎn)A,PBC是經(jīng)過O點(diǎn)的割線,若∠P=30°,則弧AB的度數(shù)是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,其中兩圓沒有的位置關(guān)系是( 。
A.外離B.內(nèi)含C.外切D.相交

查看答案和解析>>

同步練習(xí)冊答案