【題目】如圖,在ABCD中,AC⊥CD.
(1)延長DC到E,使CE=CD,連接BE,求證:四邊形ABEC是矩形;
(2)若點F,G分別是BC,AD的中點,連接AF,CG,試判斷四邊形AFCG是什么特殊的四邊形?并證明你的結論.
【答案】(1)證明見解析;(2)四邊形AFCG是菱形.
【解析】
(1)根據(jù)矩形的判定方法,通過條件先判定四邊形ABEC是平行四邊形,再由AC⊥CD,得到平行四邊形的一個內(nèi)角是直角,可證明四邊形ABEC是矩形;
(2)由中點G、F和ABCD,可證明四邊形AFCG也是平行四邊形,在Rt△ACD中用斜邊中線等于斜邊一半可得到AG=CG,進而可求證四邊形AFCG是菱形.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵CD=CE,
∴CE∥AB,CE=AB,
∴四邊形ABEC是平行四邊形,
∵AC⊥CD,
∴∠ACE=90°,
∴四邊形ABEC是矩形;
(2)四邊形AFCG是菱形,
證明:∵四邊形ABCD是平行四邊形,
∴AD=CB,AD∥CB,
∵點F、G分別是BC、AD的中點,
∴AG=DG=AD,BF=CF=BC,
∴AG=CF,
∴四邊形AFCG是平行四邊形,
∵∠ACD=90°,G為AD的中點,
∴AG=CG,
∴四邊形AFCG是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉中心逆時針旋轉,設旋轉角為α.在旋轉過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.(1)當正方形AEFG旋轉至如圖2所示的位置時,求證:BE=DG;(2)如圖3,如果α=45°,AB=2,AE=4,求點G到BE的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知京潤生物制品廠生產(chǎn)某種產(chǎn)品的年產(chǎn)量不超過800噸,生產(chǎn)該產(chǎn)品每噸所需相關費為10萬元,且生產(chǎn)出的產(chǎn)品都能在當年銷售完.產(chǎn)品每噸售價y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關系如圖所示
(1)當該產(chǎn)品年產(chǎn)量為多少噸時,當年可獲得7500萬元毛利潤?(毛利潤=銷售額﹣相關費用)
(2)當該產(chǎn)品年產(chǎn)量為多少噸時,該廠能獲得當年銷售的是大毛利潤?最大毛利潤多少萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡AF上的D處測得大樹頂端B的仰角是30°,在地面上A處測得大樹頂端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大樹的高度.(結果保留整數(shù),參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=ax2+bx+c(a>0)與x軸交于A(﹣1,0)、B兩點(點A在點B的左側),與y軸交于點C,拋物線的頂點為點D,對稱軸為直線x=1,交x軸于點E,tan∠BDE=.
(1)求拋物線的表達式;
(2)若點P是對稱軸上一點,且∠DCP=∠BDE,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量兩個路燈之間的距離,小明在夜晚由路燈AB走向路燈CD,當他走到點E時,發(fā)現(xiàn)身后他頭頂部F的影子剛好接觸到路燈AB的底部A處,當他向前再步行15m到達G點時,發(fā)現(xiàn)身前他頭頂部H的影子剛好接觸到路燈CD的底部C處,已知小明同學的身高是1.7m,兩個路燈的高度都是8.5米,則AC=_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】即墨素有“中國針織名城”的美譽,2016年,又被中國服裝協(xié)會授予“中國童裝名稱”的稱號,該區(qū)一網(wǎng)店銷售某款童裝,當每件售價80元時,每周可賣200件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣20件.已知該款童裝每件成本價60元,設該款童裝每件售價x(60≤x≤80)元,每周的銷售量為y件.
(1)求y與x之間的函數(shù)關系式;
(2)設每周的銷售利潤為W元,當每件售價定為多少元時,每周的銷售利潤最大,最大利潤多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用下面的方法可以畫△AOB的內(nèi)接等邊三角形,閱讀后解答相應問題.
畫法:①在△AOB內(nèi)畫等邊三角形CDE,使點C在OA上,點D在OB上;②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;③連接C′D′,則△C′D′E′是△AOB的內(nèi)接等邊三角形.
(1)求證:△C′D′E′是等邊三角形;
(2)求作:內(nèi)接于已知△ABC的矩形DEFG,使它的邊EF在BC上,頂點D,G分別在AB,AC上,且DE:EF=1∶2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com