【題目】如圖,正方形OABC的邊長為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為 .
【答案】2
【解析】解:過D點(diǎn)作關(guān)于OB的對(duì)稱點(diǎn)D′,連接D′A交OB于點(diǎn)P,由兩點(diǎn)之間線段最短可知D′A即為PA+PD的最小值, ∵D(2,0),四邊形OABC是正方形,
∴D′點(diǎn)的坐標(biāo)為(0,2),A點(diǎn)坐標(biāo)為(6,0),
∴D′A= =2 ,即PA+PD的最小值為2 .
所以答案是2 .
【考點(diǎn)精析】關(guān)于本題考查的軸對(duì)稱-最短路線問題,需要了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若⊙O的半徑為3,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運(yùn)動(dòng)過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a<0,在代數(shù)式| a |,-a,a2009 , a2010 , | -a |,( +a),( -a)中負(fù)數(shù)的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com