【題目】如圖,從燈塔處觀測輪船的位置,測得輪船在燈塔北偏西的方向,輪船在燈塔北偏東的方向,且海里,海里,已知,求、兩艘輪船之間的距離.(結(jié)果保留根號)
【答案】A、B兩艘輪船之間的距離為海里.
【解析】
過A點(diǎn)和B點(diǎn)分別作AD⊥MN,BE⊥MN,過B點(diǎn)作BF⊥AD,垂足為D,先求出AD=DC=2,BE=1,CE=3,再求AF,BF的長,由勾股定理即可求出答案.
解:如圖,過A點(diǎn)和B點(diǎn)分別作AD⊥MN,BE⊥MN,過B點(diǎn)作BF⊥AD,垂足為D,
∴∠ACD=45°,∠CBE=α,
∵,
∴AD=DC=2,
∵,,設(shè)BE=x,則CE=3x,
∴x2+(3x)2=()2,
∴BE=1,CE=3,
∴AF=AD-FD=2,BF=CE+CD=5,
∴AB==,
∴A、B兩艘輪船之間的距離為海里.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1,平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn),.雙曲線與直線交于點(diǎn).
(1)求的值;
(2)在圖1中以線段為邊作矩形,使頂點(diǎn)在第一象限、頂點(diǎn)在軸負(fù)半軸上.線段交軸于點(diǎn).直接寫出點(diǎn),,的坐標(biāo);
(3)如圖2,在(2)題的條件下,已知點(diǎn)是雙曲線上的一個(gè)動點(diǎn),過點(diǎn)作軸的平行線分別交線段,于點(diǎn),.
請從下列,兩組題中任選一組題作答.我選擇組題.
A.①當(dāng)四邊形的面積為時(shí),求點(diǎn)的坐標(biāo);
②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(diǎn)(不與點(diǎn)重合),使以,,為頂點(diǎn)的三角形與全等?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
B.①當(dāng)四邊形成為菱形時(shí),求點(diǎn)的坐標(biāo);
②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(diǎn)(不與點(diǎn)重合),使以,,為頂點(diǎn)的三角形與全等?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a、b、c是常數(shù),a<0)經(jīng)過點(diǎn)A(-1,0)、B(3,0),頂點(diǎn)為C,則下列說法正確的個(gè)數(shù)是( )
①當(dāng)-1<x<3時(shí),ax2+bx+c>0;②當(dāng)△ABC是直角三角形,則a=- ;
③若m≤x≤m+3時(shí),二次函數(shù)y=ax2+bx+c的最大值為am2+bm+c,則m≥3.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+5ax+c(a<0)與x軸負(fù)半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),D是拋物線的頂點(diǎn),過D作DH⊥x軸于點(diǎn)H,延長DH交AC于點(diǎn)E,且S△ABD:S△ACB=9:16,
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若△DBH與△BEH相似,試求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,點(diǎn)P在邊BC上,聯(lián)結(jié)AP,將△ABP繞著點(diǎn)A旋轉(zhuǎn),使得點(diǎn)P與邊AC的中點(diǎn)M重合,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,則BB′的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,AB∥x軸,OB=2,雙曲線y=經(jīng)過點(diǎn)B,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使點(diǎn)O的對應(yīng)點(diǎn)D落在x軸的正半軸上.若AB的對應(yīng)線段CB恰好經(jīng)過點(diǎn)O.
(1)求點(diǎn)B的坐標(biāo)和雙曲線的解析式;
(2)判斷點(diǎn)C是否在雙曲線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖像如圖所示,它的對稱軸為直線,與軸交點(diǎn)的橫坐標(biāo)分別為,,且.下列結(jié)論中:①;②;③;④方程有兩個(gè)相等的實(shí)數(shù)根;⑤.其中正確的有( )
A.②③⑤B.②③C.②④D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( 。
①,②,③,④CE2=CDBC.
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com