【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)(﹣2,3)的直線l經(jīng)過(guò)一、二、三象限,若點(diǎn)(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2

【答案】D
【解析】解:設(shè)一次函數(shù)的解析式為y=kx+t(k≠0),
∵直線l過(guò)點(diǎn)(﹣2,3).點(diǎn)(0,a),(﹣1,b),(c,﹣1),
∴斜率k= = = ,即k= =b﹣3=
∵直線l經(jīng)過(guò)一、二、三象限,
∴k>0,
∴a>3,b>3,c<﹣2.
故選D.
【考點(diǎn)精析】本題主要考查了一次函數(shù)的概念和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù);一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見,k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC在網(wǎng)格中的位置如圖所示,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)將點(diǎn)A,B,C的橫坐標(biāo)都乘以﹣1,縱坐標(biāo)不變,分別得到點(diǎn)A1 , B1 , C1 , 在圖中找到點(diǎn)A1 , B1 , C1 , 并順次連接A1 , B1 , C1得到△A1B1C1 , 則這兩個(gè)三角形關(guān)于對(duì)稱;
(3)若以點(diǎn)A,C,P為頂點(diǎn)的三角形與△ABC全等,直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某中學(xué)初三800名學(xué)生的視力情況,從中隨機(jī)抽取了30名學(xué)生進(jìn)行調(diào)查,在此次調(diào)查中,樣本容量為( 。

A800 B30 C800名學(xué)生的視力 D30名學(xué)生的視力

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(5a2﹣2a)﹣2(3a+2a2),其中a=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算。
(1)填空:
(a﹣b)(a+b)=;
(a﹣b)(a2+ab+b2)=
(a﹣b)(a3+a2b+ab2+b3)=;
(2)猜想:
(a﹣b)(an1+an2b+an3b2+…+abn2+bn1)=(其中n為正整數(shù),且n≥2);
(3)利用(2)猜想的結(jié)論計(jì)算:①29+28+27+…+22+2+1
②210﹣29+28﹣…﹣23+22﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的邊長(zhǎng)為2,建立合適的直角坐標(biāo)系,寫出各個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將方程5x﹣1=4x變形為5x﹣4x=1,這個(gè)過(guò)程利用的性質(zhì)是(  )

A. 等式性質(zhì)1 B. 等式性質(zhì)2

C. 移項(xiàng) D. 以上說(shuō)法都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠1=∠2,∠3=∠4,則下列結(jié)論正確的有(  )
①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案