【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.
(1)求被剪掉陰影部分的面積:
(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?
【答案】(1)平方米;(2)米;
【解析】
試題(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長,最后根據(jù)扇形的面積公式即可求得結(jié)果;
(2)設(shè)圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,根據(jù)弧長公式及圓的周長公式即可求得結(jié)果.
(1)∵∠BAC=90°
∴弦BC為直徑
∴AB=AC
∴AB=AC=BC·sin45°=
∴S陰影=S⊙O-S扇形ABC=()2-;
(2)設(shè)圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,由題意得
2r=,解得r=
答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
我們可以通過以下方法求代數(shù)式的最小值.
,
∵≥0,
∴當(dāng)時(shí), 有最小值.
請根據(jù)上述方法,解答下列問題:
(1),則的值是______;
(2)求證:無論x取何值,代數(shù)式的值都是正數(shù);
(3)若代數(shù)式的最小值為2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的頂點(diǎn)A、C、D都在⊙O上,AB與⊙O相切于點(diǎn)A,BC與⊙O交于點(diǎn)E,設(shè)∠OCD=α,∠BAD=β.
(1)求證:AB=AE;
(2)試探究α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D在AB上,以BD為直徑的⊙O切AC于點(diǎn)E,連接DE并延長,交BC的延長線于點(diǎn)F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動(dòng),點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.,并指出此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是弧EB的中點(diǎn),則下列結(jié)論:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條直線過點(diǎn),且與拋物線交于A、B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
⑴求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo) ;
⑵在軸上是否存在點(diǎn)C,使得ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
⑶.過線段AB上一點(diǎn)P,作PM∥軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限;點(diǎn),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在進(jìn)行商業(yè)街改造,商業(yè)街起點(diǎn)在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風(fēng)貌,按照有關(guān)規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊(duì)繼續(xù)向正東方向修建200m商業(yè)街到C處,則對(duì)于從B到C的商業(yè)街改造是否違反有關(guān)規(guī)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O經(jīng)過點(diǎn)B,D,E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)證明:直線AC是⊙O的切線.
(2)當(dāng)AE=4,AD=2時(shí),求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com