【題目】如圖,在直角坐標系中,點A,B分別在x,y軸上,點C是OB的中點,BE,CD都與x軸平行,BD⊥AB,∠ABO=30°.
(1)判斷△OBD的形狀;
(2)若A(-3,0),BE=6,求證OE=AD.
【答案】(1)△OBD為等邊三角形;(2)證明見詳解
【解析】
(1)根據(jù)點C是OB的中點, CD與x軸平行得出,通過BD⊥AB,∠ABO=30°,求出60°,即可證明△OBD為等邊三角形;(2)根據(jù)BE與x軸平行得出=90°,由∠ABO=30°,∠AOB=90°推出AB=2OA=6,則可證明,即可求證OE=AD.
解:(1)△OBD為等邊三角形
在BOD中點C是OB的中點, CD與x軸平行
∴
又BD⊥AB,∠ABO=30°
∴60°
∴△OBD為等邊三角形
(2)BE與x軸平行
∴BE⊥BO即=90°
又A(-3,0)
∴OA=3
又∠ABO=30°,∠AOB=90°
∴AB=2OA=6
∴AB=BE
在和中
∴
∴OE=AD
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小張某天下午的運營是在一條東西走向的大道上。如果規(guī)定向東為正,他這天下午的行程記錄如下:(單位:千米)
+15,-3,+14,-11,+10,-18,+14
(1)將最后一名乘客送到目的地時,小張離下午出車點的距離是多少?
(2)離開下午出發(fā)點最遠時是多少千米?
(3)若汽車的耗油量為0.06升/千米,油價為4.5元/升,這天下午共需支付多少油錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,斜邊c=5,兩直角邊的長a,b是關(guān)于x的一元二次方程的兩個根,則Rt△ABC中較短的直角邊長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格中有格點△ABC與△DEF.
(1)△ABC與△DEF是否全等?(不說理由.)
(2)△ABC與△DEF是否成軸對稱?(不說理由.)
(3)若△ABC與△DEF成軸對稱,請畫出它的對稱軸l.并在直線l上畫出點P,使PA+PC最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵∠BAC=70°,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(﹣a3)2+a6=_____.
(2)2a5b(﹣ab)3=_____.
(3)=_____.
(4)(﹣a)3(﹣a)4=_____.
(5)(x+2)(x﹣3)=_____.
(6)(2×103)×(5×104)=_____.(用科學記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
已知:等邊三角形ABC
(1)如圖1,P為等邊△ABC外一點,且∠BPC=120°.試猜想線段BP、PC、AP之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,P為等邊△ABC內(nèi)一點,且∠APD=120°.求證:PA+PD+PC>BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com