【題目】如圖,二次函數(shù)y=a(x2+2mx﹣3m2)(其中a,m是常數(shù)a<0,m>0)的圖象與x軸分別交于A、B(點(diǎn)A位于點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C(0,3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連結(jié)AD.過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)求a與m的關(guān)系式;
(2)求證:為定值;
(3)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為F.探索:在x軸的正半軸上是否存在點(diǎn)G,連結(jié)GF,以線段GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?如果存在,只要找出一個(gè)滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】(1)am2=﹣1;(2)證明見解析;(3)存在,點(diǎn)G的橫坐標(biāo)為3m.
【解析】
(1)將點(diǎn)C的坐標(biāo)代入拋物線表達(dá)式,即可求解;
(2)證明RtADM△∽Rt△ANE,求出點(diǎn)E(x,),將點(diǎn)E的坐標(biāo)代入拋物線表達(dá)式,得到E(﹣4m,﹣5),即可求解;
(3)求出點(diǎn)F(﹣m,4),得到直線FC的表達(dá)式,求出點(diǎn)G(3m,0),即可求解.
解:(1)將點(diǎn)C的坐標(biāo)代入拋物線表達(dá)式得:﹣3am2=3,
解得:am2=﹣1;
(2)對(duì)于二次函數(shù)y=a(x2+2mx﹣3m2),令y=0,則x=m或﹣3m,
∴函數(shù)的對(duì)稱軸為:x=﹣m,
∵CD∥AB,
∴點(diǎn)D、C的縱坐標(biāo)相同,故點(diǎn)D(﹣2m,3),
故點(diǎn)A、B的坐標(biāo)分別為:(m,0)、(﹣3m,0),
設(shè)點(diǎn)E(x,y),y=a(x2+2mx﹣3m2),
分別過點(diǎn)D、E作x軸的垂線,垂足分別為M、N,
∵AB平分∠DAE,
∴∠DAM=∠EAN,
∴RtADM△∽Rt△ANE,
∴,即,
解得:y=,
故點(diǎn)E(x,),
將點(diǎn)E的坐標(biāo)代入拋物線表達(dá)式并解得:x=﹣4m,
則y==﹣5,
故點(diǎn)E(﹣4m,﹣5),
故==為定值;
(3)存在,理由:
函數(shù)的對(duì)稱軸為x=﹣m,當(dāng)x=﹣m時(shí),y=a(x2+2mx﹣3m2)=4,即點(diǎn)F(﹣m,4),
由點(diǎn)F、C的坐標(biāo)得,直線FC的表達(dá)式為:y=﹣x+3,令y=0,則x=3m,即點(diǎn)G(3m,0),
GF2=(3m+m)2+42=16m2+16,
同理AD2=9m2+9,AE2=25m2+25,
故AE2=AD2+GF2,
GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形,
點(diǎn)G的橫坐標(biāo)為3m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形中,(其中)
(1)點(diǎn),分別在邊,上,;
①如圖,若,且點(diǎn)是中點(diǎn),求證;
②如圖,若,且,求證:;
(2)如圖,當(dāng),時(shí),點(diǎn)以的速度從到,點(diǎn)以的速度從到,當(dāng)點(diǎn)到時(shí)兩點(diǎn)都停止運(yùn)動(dòng),則點(diǎn)的運(yùn)動(dòng)時(shí)間為多少時(shí),的面積最小,最小面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩家草莓采摘園,草莓的銷售價(jià)格相間,在生長(zhǎng)旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時(shí),按原價(jià)銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買元門票.采摘的草莓直接按降價(jià)出售.已知在甲園、乙園采摘草莓時(shí),所需費(fèi)用相同.
在乙采摘園所需費(fèi)用( 元)與草梅采摘量(千克)滿足一次函數(shù)關(guān)系,如下表:
數(shù)量/千克 | ··· | ||||
費(fèi)用元 | ··· |
(1)求與的函數(shù)關(guān)系式(不必寫出的范圍);
(2)求兩個(gè)采摘園的草莓在生長(zhǎng)旺季前的銷售價(jià)格.并求在甲采摘園所需費(fèi)用(元)與草莓采摘量(千克)的函數(shù)關(guān)系式;
(3)若嘉琪準(zhǔn)備花費(fèi)元去采摘草莓,去哪個(gè)園采摘,可以得到更多數(shù)量的草莓? 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如圖,在菱形中,,,把菱形繞點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到菱形,其中點(diǎn)的運(yùn)動(dòng)路徑為,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上一點(diǎn),連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在⊙O上.
(1)求證:AE=AB.
(2)填空:
①當(dāng)∠CAB=90°,cos∠ADB=,BE=2時(shí),邊BC的長(zhǎng)為 .
②當(dāng)∠BAE= 時(shí),四邊形AOED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,創(chuàng)新小組要測(cè)量公園內(nèi)一棵樹的高度AB,其中一名小組成員站在距離樹10米的點(diǎn)E處,測(cè)得樹頂A的仰角為54°.已知測(cè)角儀的架高CE=1.8米,則這顆樹的高度為_________米.(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時(shí)間與B型機(jī)器人搬運(yùn)800kg材料所用的時(shí)間相同.
(1)求A,B兩種型號(hào)的機(jī)器人每小時(shí)分別搬運(yùn)多少材料;
(2)該公司計(jì)劃采購(gòu)A,B兩種型號(hào)的機(jī)器人共20臺(tái),要求每小時(shí)搬運(yùn)材料不得少于2800kg,則至少購(gòu)進(jìn)A型機(jī)器人多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一臺(tái)放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形.若顯示屏AO與鍵盤BO長(zhǎng)均為24cm,點(diǎn)P為眼睛所在位置,D為AO的中點(diǎn),連接PD,且PD⊥AO(此時(shí)點(diǎn)P為最佳視角),點(diǎn)C在OB的延長(zhǎng)線上,PC⊥BC,BC=12cm.
(1)當(dāng)PA=45cm時(shí),求PC的長(zhǎng);
(2)當(dāng)∠AOC=115°時(shí),線段PC的長(zhǎng)比(1)中線段PC的長(zhǎng)是增大還是減?請(qǐng)通過計(jì)算說明.(結(jié)果精確到0.1cm,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com