【題目】矩形中,(其中)
(1)點,分別在邊,上,;
①如圖,若,且點是中點,求證;
②如圖,若,且,求證:;
(2)如圖,當,時,點以的速度從到,點以的速度從到,當點到時兩點都停止運動,則點的運動時間為多少時,的面積最小,最小面積為多少?
科目:初中數(shù)學 來源: 題型:
【題目】在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.
(1)梯形ABCD的面積等于 .
(2)如圖1,動點P從D點出發(fā)沿DC以DC以每秒1個單位的速度向終點C運動,動點Q從C點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.當PQ∥AB時,P點離開D點多少時間?
(3)如圖2,點K是線段AD上的點,M、N為邊BC上的點,BM=CN=5,連接AN、DM,分別交BK、CK于點E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過點(0,-4)和(-2,2).
(1)求的值,并用含的式子表示;
(2)求證:此拋物線與軸有兩個不同交點;
(3)當時,若二次函數(shù)滿足隨的增大而減小,求的取值范圍;
(4) 直線上有一點(,5),將點向右平移4個單位長度,得到點,若拋物線與線段只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,點E,F是對角線AC的三等分點,點P在正方形的邊上,則滿足PE+PF=的點P的個數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是邊BC上的中線,BE⊥AC于點E,交AD于點H過點C作CF∥AB交BE的延長線于點F.
(1)求證:△ABH∽△BFC;
(2)求證:BH2=HEHF;
(3)若AB=2,∠BAC=45°,求BH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,是的平分線,經(jīng)過兩點的圓的圓心恰好落在上,分別與交于點.若.則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x﹣2與x軸,y軸分別交于點D,C.點G,H是線段CD上的兩個動點,且∠GOH=45°,過點G作GA⊥x軸于A,過點H作HB⊥y軸于B,延長AG,BH交于點E,則過點E的反比例函數(shù)y=的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=a(x2+2mx﹣3m2)(其中a,m是常數(shù)a<0,m>0)的圖象與x軸分別交于A、B(點A位于點B的右側(cè)),與y軸交于點C(0,3),點D在二次函數(shù)的圖象上,CD∥AB,連結(jié)AD.過點A作射線AE交二次函數(shù)的圖象于點E,AB平分∠DAE.
(1)求a與m的關(guān)系式;
(2)求證:為定值;
(3)設(shè)該二次函數(shù)的圖象的頂點為F.探索:在x軸的正半軸上是否存在點G,連結(jié)GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數(shù)式表示該點的橫坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com