【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng).

1)如果點(diǎn)、分別從、同時(shí)出發(fā),幾秒鐘后,的面積等于?

2)在(1)中,的面積能否等于面積的一半?說明理由;

3)幾秒后,點(diǎn),點(diǎn)相距

【答案】(1)經(jīng)過秒鐘,使的面積為.(2)的面積不能等于面積的一半;(3秒或秒后,點(diǎn),點(diǎn)相距.

【解析】

1)設(shè)經(jīng)過x秒鐘,使△PBQ的面積為8cm2,得到BP=6-x,BQ=2x,根據(jù)三角形的面積公式得出方程6-x×2x=8,求出即可;

2△ABC面積為36cm2,同(1)列方程解答即可;

3)設(shè)t秒后,點(diǎn)P,點(diǎn)Q相距4cm,依題意得BP=6-tBQ=2t,利用勾股定理列方程求解.

解:(1)設(shè)經(jīng)過秒鐘,使的面積為,

,,

,

,

,.

答:經(jīng)過秒鐘,使的面積為.

2)由題意得,,

,

,

此方程無解,的面積不能等于面積的一半;

3)設(shè)秒后,點(diǎn),點(diǎn)相距,由題意得:

整理得:,

解得:,

答:秒或秒后,點(diǎn),點(diǎn)相距.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先將一張邊長(zhǎng)為4的正方形紙片ABCD沿著MN對(duì)折,然后,分別將C、D沿著折痕BF、AE對(duì)折,使得C、D兩點(diǎn)都落在折痕MN上的點(diǎn)O處,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一款落地?zé)舻臒糁?/span>AB垂直于水平地面MN,高度為1.6米,支架部分的形為開口向下的拋物線,其頂點(diǎn)C距燈柱AB的水平距離為0.8米,距地面的高度為2.4 米,燈罩頂端D距燈柱AB的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線lx軸,y軸分別交于AB兩點(diǎn),且與反比例函數(shù)yx0)的圖象交于點(diǎn)C,若SAOBSBOC1,則k=(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,CBAB,D為圓上一點(diǎn),且ADOC,連接CDACBD,ACBD交于點(diǎn)M

1)求證:CD為⊙O的切線;

2)若CDAD,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為cm,在AC,BC邊上各取一點(diǎn)EF,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),則動(dòng)點(diǎn)P經(jīng)過的路徑長(zhǎng)為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的周長(zhǎng)是48cm, AEBC,垂足為E,AFCD,垂足為F,∠EAF2C

1)求∠C的度數(shù);

2)已知DF的長(zhǎng)是關(guān)于x的方程x25xa0的一個(gè)根,求該方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩個(gè)黑布袋,A布袋中有四個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字01,2,3B布袋中有三個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字01,2.小明先從A布袋中隨機(jī)取出一個(gè)小球,用m表示取出的球上標(biāo)有的數(shù)字,再?gòu)?/span>B布袋中隨機(jī)取出一個(gè)小球,用n表示取出的球上標(biāo)有的數(shù)字.

1)若用(m,n)表示小明取球時(shí)mn 的對(duì)應(yīng)值,請(qǐng)畫出樹狀圖并寫出(m,n)的所有取值;

2)求關(guān)于x的一元二次方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在ABC中,∠BAC=60°,BC=4,則ABC面積的最大值是

2)已知:ABC,用無刻度的直尺和圓規(guī)求作DBC,使∠BDC+A=180°,且BD=DC.(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注,作出一個(gè)符合題意的三角形即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案