【題目】閱讀與理解:

如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右) 爬行記為“+”,向下(或向左) 爬行記為“﹣”,并且第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

例如:從AB記為:A→B(+1,+4),從DC記為:D→C(﹣1,+2).

思考與應(yīng)用:

(1)圖中A→C(   ,   ),B→C(      ),D→A(      

(2)若甲蟲從AP的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請在圖中標(biāo)出P的位置.

(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計算該甲蟲走過的總路程.

【答案】(1)A→C(+3,+4),B→C(+2,0),D→A(﹣4,﹣2)(2)標(biāo)出P的位置見解析;(3)甲蟲走過的總路程為16.

【解析】

(1)根據(jù)規(guī)定:向上、向右走為正,向下、向左走為負(fù),結(jié)合圖中點A、B、C、D的位置,即可得出結(jié)論;

(2) 根據(jù)坐標(biāo)位置的確定規(guī)則,把從A處去到各處的行走路線逐一找出,A→(+1,+4)即是從點A出發(fā),往右移動2格,再往上移動4格,以此類推,最后找到點P的位置即可;

(3)根據(jù)點的運(yùn)動路徑,把經(jīng)過的路線的長度相加,即各數(shù)對數(shù)值的絕對值相加即可得解

解:(1)A→C向右3個單位,向上4個單位,

所以A→C(+3,+4),

同理:B→C(+2,0),D→A(﹣4,﹣2).

故答案是:A→C(+3,+4),B→C(+2,0),D→A(﹣4,﹣2)

(2)如圖2所示.

(3)甲蟲走過的總路程:

|+1|+|+4|+|+2|+|+1|+|﹣2|+|﹣4|+|﹣2|=16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索新知:

如圖1,射線OC的內(nèi)部,圖中共有3個角:,,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC的“巧分線”.

(1)一個角的平分線______這個角的“巧分線”;填“是”或“不是”

(2)如圖2,若,且射線PQ的“巧分線”,則______;用含的代數(shù)式表示出所有可能的結(jié)果

深入研究:

如圖2,若,且射線PQ繞點PPN位置開始,以每秒的速度逆時針旋轉(zhuǎn),當(dāng)PQPN時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

(3)當(dāng)t為何值時,射線PM的“巧分線”;

(4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ的“巧分線”時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關(guān)于y軸對稱.

(1)求一次函數(shù),反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了統(tǒng)計知識后,班主任王老師叫班長就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計,圖1和圖2是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所對應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學(xué)生;
(3)在圖1中,將表示“乘車”的部分補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平行四邊形ABCD中,AE⊥BC,垂足為E,CE=CD,點FCE的中點,點GCD上的一點,連接DF,EG,AG∠1=∠2

1)求證:GCD的中點.

(2) CF=2,AE=3,求BE的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,AB=AD,∠BAD的平分線AEBC于點E,連接DE

(1)求證:四邊形ABED是菱形;

(2)若∠DEC=60°,CE=2DE=4cm,CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點EBC上一點,連接DE,把DEC沿DE折疊得到DEF,延長EFABG,連接DG

(1)求EDG的度數(shù).

(2)如圖2,EBC的中點,連接BF

求證:BFDE;

若正方形邊長為12,求線段AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(3,2),B(4,3),C(1,1)

(1)在圖中作出ABC關(guān)于y軸對稱的A1B1C1;寫出點A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1 ;C1 ;

(2)A1B1C1的面積為 ;

(3)在y軸上畫出點P,使PB+PC最小

查看答案和解析>>

同步練習(xí)冊答案