【題目】如圖所示,E、F分別為線段AC上的兩個點,且DEAC于點E,BFAC于點F,若AB=CD,AE=CF,BDAC于點M.

(1)試猜想DEBF的關系,并證明你的結論;

(2)求證:MB=MD.

【答案】1)證明見解析 (2)證明見解析

【解析】

試題(1)根據(jù)BF⊥AC,DE⊥ACAE=CF AF=AE+EF CE=CF+EF,可以證明Rt△ABF≌Rt△CDE,得DE=

BF;再根據(jù)BF⊥AC,DE⊥AC,可以證明DE//BF.2)根據(jù)(1)中的結論,可證△BFM≌△DEM,從而證明MB=MD.

試題解析:(1①DEBF的關系可以有DE=BF成立,理由如下:

∵AE=CF AF=AE+EF CE=CF+EF

∴AF=CE ∵BF⊥AC,DE⊥AC

∴∠BFA=∠DEC=90°

Rt△ABFRt△CDE

∴Rt△ABF≌Rt△CDE HL

∴DE=BF(全等三角形對應邊相等)

②DEBF的關系可以有DE//BF,理由如下:

∵DE⊥AC BF⊥AC

∴DE//BF

2)證明:

∵Rt△ABF≌Rt△CDE

∴BF=ED

△BFM△DEM

∴△BFM≌△DEM AAS

∴MB=MD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.

(1)寫出數(shù)軸上點A表示的數(shù);

(2)將長方形OABC沿數(shù)軸向右水平移動,移動后的長方形記為,若移動后的長方形與原長方形OABC重疊部分的面積恰好等于原長方形OABC面積的時,寫出數(shù)軸上點表示的數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡頂A處的俯角為15°,山腳處B的俯角為60°,已知該山坡的坡度i=1: ,點P、H,B,C,A在同一個平面上,點HBC在同一條直線上,且PH⊥BC,則A到BC的距離為( )

A.10
B.15米
C.20
D.30米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在正方形ABCD中,F(xiàn)是CD邊上一點(不和C,D重合),過點D做DG⊥BF交BF延長線于點G.連接AG,交BD于點E,連接EF,交CD于點M.若DG=6,AG=7 ,則EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中描出下列各組點,并將各組內(nèi)的點用線段依次連接起來.

(1,1),(3,1),(1,3),(1,1);

(1,3)(1,5),(3,3),(1,3);

(5,1),(3,-1)(3,1),(5,1)

(1,-1),(1,-1)(1,-3),(1,-1)

(1)觀察所得的圖形,你覺得它像什么?

(2)求出這四個圖形的面積和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,,,,把點以每秒的速度逆時針方向旋轉(zhuǎn)一周,同時點以每秒的速度逆時針方向旋轉(zhuǎn),當停止旋轉(zhuǎn)時也隨之停止旋轉(zhuǎn).設旋轉(zhuǎn)后的兩個角分別記為、,旋轉(zhuǎn)時間為秒.

1)如圖2,直線垂直于,將沿直線翻折至,請你直接寫出的度數(shù),不必說明理由;

2)如圖1,在旋轉(zhuǎn)過程中,若射線重合時,求的值;

3)如圖1,在旋轉(zhuǎn)過程中,當時,直接寫出的值,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖 1,在四邊形 ABCD ,ABDC,E BC 中點, AE BAD 的平分線,試探究 AB,AD,DC 之間的數(shù)量關系,請直接寫出結論,無需證明

(2)如圖 2,在四邊形ABCD ,ABDCAF DC 的延長線交于點F,E BC 中點AE BAF 的平分線,試探究AB,AF,CF 之間的數(shù)量關系證明你的結論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm,動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動,E點運動到B點停止,F(xiàn)點繼續(xù)運動,運動到點D停止.如圖可得到矩形CFHE,設F點運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關系用圖象表示大致是如圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正五邊形ABCDE中,連接AC、ADCE,CEAD于點F,連接BF,則線段AC、BF、CD之間的關系式是_____

查看答案和解析>>

同步練習冊答案