【題目】如圖,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.
(1)寫出數(shù)軸上點A表示的數(shù);
(2)將長方形OABC沿數(shù)軸向右水平移動,移動后的長方形記為,若移動后的長方形與原長方形OABC重疊部分的面積恰好等于原長方形OABC面積的時,寫出數(shù)軸上點表示的數(shù);
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結論是( )
A.①②③
B.①④⑤
C.①③④
D.③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年級共有330名男生,為了解該年級男生1000米跑步成績(單位:分/秒)的情況,從中隨機抽取30名男生進行測試,獲得了他們的相關成績,并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.
a.1000米跑步的頻數(shù)分布表如下:
分組 | 3′17″<x≤3′ 37″ | 3′37″<x≤3′ 57″ | 3′ 57″<x≤4′ 17″ | 4′ 17″<x≤4′ 37″ | 4′ 37″<x≤4′ 57″ | 4′ 57″<x≤5′ 17″ |
頻數(shù) | 10 | 9 | m | 2 | 2 | 1 |
注:3′37″即3分37秒
b.1000米跑步在3′37″<x≤3′57″這一組是:
3′39 ″ 3′42 ″ 3′45 ″ 3′45″ 3′50 ″ 3′52 ″ 3′53″ 3′55″ 3′57″
根據(jù)以上信息,回答下列問題:
(1)表中m的值為 ;
(2)根據(jù)表頻數(shù)分布表畫出相應的頻數(shù)分布直方圖.
(3)若男生1000米跑步成績等于或者優(yōu)于3′52″,成績記為優(yōu)秀.請估計全年級男生跑步成績達到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,下面四個結論:①CF=2AF;②tan∠CAD= ;
③DF=DC;④△AEF∽△CAB;⑤ S四邊形CDEF=S△ABF ,其中正確的結論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了層,將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個數(shù)為
如果圖中的圓圈共有13層,請解決下列問題:
(1)若自上往下,在圖①每個圓圈中填上一串連續(xù)的正整數(shù)1,2,3,4,…,得到圖3,寫出第11層最左邊這個圓圈中的數(shù);
(2)若自上往下,在圖①每個圓圈中填上一串連續(xù)的整數(shù)-23,-22,-21,20,…,得到圖4,寫出第10層最右邊圓圈內的數(shù);
(3)根據(jù)以上規(guī)律,求圖4中第1層到第10層所有圓圈中各數(shù)之和(寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知α是銳角,且點A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關系是( )
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陸老師布置了一道題目:過直線l外一點A作l的垂線.(用尺規(guī)作圖)
小淇同學作法如下:
(1)在直線l上任意取一點C,連接AC;
(2)作AC的中點O;
(3)以O為圓心,OA長為半徑畫弧交直線l于點B,如圖所示;
(4)作直線AB.
則直線AB就是所要作圖形.
你認為小淇的作法正確嗎?如果不正確,請畫出一個反例;如果正確,請給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AC=BC,點D為BC的中點,CE⊥AD于點E,其延長線交AB于點F,連接DF.求證:∠ADC=∠BDF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF,BD交AC于點M.
(1)試猜想DE與BF的關系,并證明你的結論;
(2)求證:MB=MD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com