【題目】綜合與探究
如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個動點(diǎn),點(diǎn)N是拋物線上一動點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)3;(3).
【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可;
(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據(jù)S△BCD=S△AOC,得到S△BCD =,然后求出BC的解析式為,則可得點(diǎn)G的坐標(biāo)為,由此可得,再根據(jù)S△BCD=S△CDG+S△BDG=,可得關(guān)于m的方程,解方程即可求得答案;
(3)存在,如下圖所示,以BD為邊或者以BD為對角線進(jìn)行平行四邊形的構(gòu)圖,以BD為邊時,有3種情況,由點(diǎn)D的坐標(biāo)可得點(diǎn)N點(diǎn)縱坐標(biāo)為±,然后分點(diǎn)N的縱坐標(biāo)為和點(diǎn)N的縱坐標(biāo)為兩種情況分別求解;以BD為對角線時,有1種情況,此時N1點(diǎn)與N2點(diǎn)重合,根據(jù)平行四邊形的對邊平行且相等可求得BM1=N1D=4,繼而求得OM1= 8,由此即可求得答案.
(1)拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0),
∴,
解得,
∴拋物線的函數(shù)表達(dá)式為;
(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,
∵點(diǎn)A的坐標(biāo)為(-2,0),∴OA=2,
由,得,∴點(diǎn)C的坐標(biāo)為(0,6),∴OC=6,
∴S△OAC=,
∵S△BCD=S△AOC,
∴S△BCD =,
設(shè)直線BC的函數(shù)表達(dá)式為,
由B,C兩點(diǎn)的坐標(biāo)得,解得,
∴直線BC的函數(shù)表達(dá)式為,
∴點(diǎn)G的坐標(biāo)為,
∴,
∵點(diǎn)B的坐標(biāo)為(4,0),∴OB=4,
∵S△BCD=S△CDG+S△BDG=,
∴S△BCD =,
∴,
解得(舍),,
∴的值為3;
(3)存在,如下圖所示,以BD為邊或者以BD為對角線進(jìn)行平行四邊形的構(gòu)圖,
以BD為邊時,有3種情況,
∵D點(diǎn)坐標(biāo)為,∴點(diǎn)N點(diǎn)縱坐標(biāo)為±,
當(dāng)點(diǎn)N的縱坐標(biāo)為時,如點(diǎn)N2,
此時,解得:(舍),
∴,∴;
當(dāng)點(diǎn)N的縱坐標(biāo)為時,如點(diǎn)N3,N4,
此時,解得:
∴,,
∴,;
以BD為對角線時,有1種情況,此時N1點(diǎn)與N2點(diǎn)重合,
∵,D(3,),
∴N1D=4,
∴BM1=N1D=4,
∴OM1=OB+BM1=8,
∴M1(8,0),
綜上,點(diǎn)M的坐標(biāo)為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線兩艘船,均收到已觸礁擱淺的船的求救信號,已知船在船的北偏東58°方向,船在船的北偏西35°方向,且的距離為30海里.觀察圖形并回答問題:(參考數(shù)據(jù):,,,,,)
(1)求船到海岸線的距離(精確到0.1海里);
(2)若船、船分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達(dá)船處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若方程有一個根為x=1,求m的值及另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)動點(diǎn)P運(yùn)動到什么位置時,△PBC面積最大,求出此時P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),是以點(diǎn)(0,3)為圓心,2為半徑的圓上的動點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條道路上通行車輛限速60千米/時,道路的AB段為監(jiān)測區(qū),監(jiān)測點(diǎn)P到AB的距離PH為50米(如圖).已知點(diǎn)P在點(diǎn)A的北偏東45°方向上,且在點(diǎn)B的北偏西60°方向上,點(diǎn)B在點(diǎn)A的北偏東75°方向上,那么車輛通過AB段的時間在多少秒以內(nèi),可認(rèn)定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)P為BC邊上一點(diǎn),設(shè)BP=x,AP2=y,已知y是x的二次函數(shù)的一部分,其圖象如圖2,點(diǎn)Q(2,12)是圖象上的最低點(diǎn),且圖象與y軸交于(0,16).
(1)求y關(guān)于x的函數(shù)解析式;
(2)當(dāng)△ABP為直角三角形時,BP的值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com